
DISTANCES BETWEEN FORMAL THEORIES
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Abstract. In the literature, there have been several methods and definitions for working out
whether two theories are “equivalent” (essentially the same) or not. In this article, we do some-

thing subtler. We provide a means to measure distances (and explore connections) between formal

theories. We introduce two natural notions for such distances. The first one is that of axiomatic
distance, but we argue that it might be of limited interest. The more interesting and widely ap-

plicable notion is that of conceptual distance which measures the minimum number of concepts

that distinguish two theories. For instance, we use conceptual distance to show that relativistic
and classical kinematics are distinguished by one concept only.

1. Introduction

One very important topic in the philosophy of science is how different scientific theories can be
compared to each other, especially in the case of competing theories. The first criterion for theory
comparison is empirical adequacy, but this is not, at all times and in all circumstances, simple and
straightforward (see, e.g., [Chang, 2012]). So, when we have competing theories, each empirically
adequate, we look elsewhere to make sense of the present state of science. For this reason, inves-
tigating the relations between theories, independent of their relation to reality, becomes also very
important.

So far this investigation has been made mainly in one direction: whether two given theories have
the same essential content. There have been several attempts to capture the concept of equivalence
between theories (henceforth: “theory-equivalence”), e.g., logical equivalence, definitional equiva-
lence, categorical equivalence, etc. When we say that two theories are not equivalent, we mean that
there is at least one difference between them, and that this difference can be formulated from the
point of view from which one decides to explore the equivalence between the theories in question.

In the present paper, we propose a new direction in the analysis of the connections between formal
theories. Our proposal aims to provide a qualitative and quantitative study of the differences
between theories. In order to investigate how far two theories are from each other, we introduce some
notions for the measure of distances between theories, such distances count the minimum number of
differences distinguishing two given theories. We do this by measuring the degree of non-equivalence
of two non-equivalent theories (according to any chosen definition of theory-equivalence).

We focus on formal theories that are formulated in any of the following logical systems: sentential
logic, ordinary first order logic (FOL), finite variables fragments of FOL and/or infinitary versions
of FOL. We develop, discuss and compare some notions for distances between theories.
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The idea is very simple: based on a symmetric relation capturing a notion of minimal change, we
introduce a general way to define a distance on any class of objects (not just theories) equipped
with an equivalence relation. The idea is a generalization of the distance between any two nodes in
the same graph, in graph theory. After, we give particular examples when the given class is a class
of theories and the equivalence relation is a fixed notion of theory-equivalence.

The first particular example, is that of logical equivalence. As a measure for the degree of logical
non-equivalence, we introduce the concept of axiomatic distance. The idea is to count the minimum
number of axioms that are needed to be added or “removed” to get from one theory to the other.1

We prove that the axiomatic distance between theories formulated in the same language must be
≤ 3. See Proposition 3.11 on Page 9. Although, counting axioms separating theories seems to be
a natural suggestion for defining the desired metric, this result gives the sense that the measure of
this axiomatic distance is of limited use.

Then we turn to definitional equivalence. Two theories are definitionally equivalent if they cannot
be distinguished by a concept (a formula defining some notion). As a measure for the degree of
definitional non-equivalence, we define conceptual distance. This distance counts the minimum
number of (non-definable) concepts that separate two theories. We find that this distance is of
special interest in the study of logic. We give examples and we count conceptual distance between
some specific theories, see, e.g., Theorem 4.3. We also explore a connection between conceptual
distance and spectrum of theories which is a central topic in model theory, cf., Theorem 4.9.

Such quantitative study might be useful, and it may provide new insights in comparing formal
theories. Given a metric on a class of formal theories formulated in a fixed logical system, some
classifications for the theories in this class can be achieved. For example, a classification can be
achieved by measuring the axiomatic distance from the empty theory, see Theorem 3.13 herein.
For a classification using conceptual distance, we refer the reader to Theorem 4.9 on page 14. The
task now is to find the relationship between the properties of theories and the categories of these
classifications, and also to set boundary lines between these categories. So, when a new theory is
constructed, its properties can be estimated, given its category in a classification.

With definitions and metrics on distance developed here, we have maps of the network of logical
theories. When we draw such maps of networks, the topology may suggest very interesting and
fruitful questions. For instance: if there is a distance other than zero or one, then is there already
a known theory in between? Or if not, we can ask what are the limitative properties of that
theory and what is its philosophical significance? By engaging such questions, we see the “edge”
of the limitative results, and by examining this edge we understand with precision the relationship
between meta-logical limitative results and physical phenomena.

Furthermore, we investigate the possible application of conceptual distance in the logical foundation
of physical theories in ordinary first order logic. We prove that conceptual distance between classical
and relativistic kinematics is equal to one. In other words, only one concept distinguishes classical
and relativistic kinematics: the existence of a class of observers who are at absolute rest. This is
indeed an interesting result in its own right, not only for logicians but also for physicists. Such
a result opens several similar questions about how many concepts differ two theories in physics
whose phenomena can be described in FOL and also, questions about the precise nature of the
differentiating concepts.

1By “removing an axiom” here we only mean the trivial converse of adding an axiom in the following sense: T is
a theory resulting from “removing” one axiom from T ′ if T ′ can be reached from T by adding one axiom.
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In the philosophy of physics, this might be important because, on the one hand, it is clear that we
are not presently converging towards one unified theory of physics in the sense of converging to one
set of laws from which all the phenomena of physics can be derived. On the other hand, we can
give a logical foundation for several physical theories: Newtonian mechanics, relativity theories and
some parts of quantum theory. Given these logical representations, we would like to know the exact
logical and conceptual relationship between physical theories. If we have a complete overview of
this, then we can form an impression of how far we are from such a philosophical dream – the dream
of the unity of physics. Or, we can adjust our hopes and expectations, and rest content with a unity
of science at a more general level: as a network of logical theories with precise relations between
them. For some philosophers, this is a radical re-conception as to what “the unity of physics”
consists in. It is worth exploring this conception, since it more accurately mirrors the actual state
of our various physical theories and their relations to each other.

The algebraic idea behind conceptual distance. By a concept, we understand a definable
notion, no matter how many different ways one can define it. In other words, a concept is a
maximal set of logically equivalent formulas. Our understanding here comes from the theory of
cylindric algebras. These algebras were defined by A. Tarski around 1947 to capture the intrinsic
algebraic side of FOL. Cylindric algebras are often introduced as algebras of different concepts of the
corresponding theories, see, e.g., [Henkin et al., 1985, Section 4.3] and [Andréka and Németi, 2017].

Now, we want to define a distance counting the minimum number of concepts that distinguish two
theories T and T ′. It is very natural to explain the idea within the framework of cylindric algebras,
since these are concept algebras and we want to count concepts. Assume that A and A′ are the
cylindric algebras corresponding to theories T and T ′, respectively.

If A is isomorphic to A′, then the two theories are definitionally equivalent [Henkin et al., 1985,
Theorem 4.3.43], and so the conceptual distance between them is zero. Now, assume that A and A′

are not isomorphic. For simplicity, let us assume that A is embeddable into A′. Thus, the minimum
number of concepts distinguishing the two theories is equal to the minimum number of elements of
A′ that we can add to A (more precisely, to one of its copies inside A′) to generate the algebra A′,
see Figure 1.

A

B

A′

• a

Figure 1. The distance between A and A′ is one if ⟨B, a⟩ ∼= A′ and A ̸∼= A′.

In the case of Figure 1, we can say that we need one step to move from T to T ′. Now, the
minimal distance between two theories can be defined as the minimum number of steps needed
to move from one theory to the other. Our definition of conceptual distance (Definition 4.1 and
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Definition 4.2) illustrates this idea, but in terms of logic instead of algebras. In a future algebra
oriented paper, we plan to discuss in detail the correspondence between our logical definition herein
and the above algebraic idea. We note that it happens quite often that one obtains interesting
results in mathematical logic by using algebraic tools, e.g., [Henkin, 1950], [Andréka et al., 1998],
[Andréka et al., 2009], [Banerjee and Khaled, 2018] and [Khaled, 2019]

We start with a quick review for the notions of logic that we are going to use. We assume familiarity
with the basic notions of set theory. For instance, what is a set, a class, a relation, etc. The only
difference is that in several places in this paper, we decided not to distinguish different kinds of
infinities. Therefore, together with the standard notion of cardinality, we are going to speak about
the size of set X, defined as follows:

||X|| def=

{
k X is finite and has exactly k-many elements,

∞ if X is an infinite set.

We also make use of von Neumann ordinals. For example, ω is the smallest infinite ordinal, some-
times we denote ω by N to indicate that it is the set of natural numbers (non-negative integers).

2. Notions of logic

In the course of this paper, let α and β ≤ α + 1 be two fixed ordinals. We consider a natural
generalisation of ordinary first order logic, we denote it by Lβ

α, which is inspired from the definitions
and the discussions in [Henkin et al., 1985, section 4.3]. Roughly, the formulas of Lβ

α uses a fixed set
of individual variables {vi : i ∈ α} and relation symbols of rank strictly less than β. For simplicity,
we assume that our languages do not contain any function symbols and/or constant symbols.

In particular, L1
0 is sentential (propositional) logic, while Lω

ω is ordinary first order logic. The so-
called finite variable fragments of first order logic are the logics Ln+1

n , for finite ordinals n. When
α and β are infinite, Lβ

α is called infinitary logic. Throughout, since α and β are fixed, languages,
theories, etc., are understood to be languages for Lβ

α, theories in Lβ
α, etc.

2.1. The syntax of Lβ
α. A language L for Lβ

α is a tuple (R, rank), where R is a set of relation
symbols and rank : R → β is a function assigns for each relation symbol R ∈ R a rank rank(R).
Relation symbols P with rank rank(P ) = 0 are called sentential constants.

From now on, and for simplicity, we will use L for a language and its set of relation symbols, and
the rank of any relation symbol R ∈ L will be denoted by rank(R). A language for Lβ

α can be also

considered to be a language for Lβ′

α , for any ordinal β′ with β ≤ β′ ≤ α+ 1.

To construct the formulas of a language L, we also need some other symbols: equality “=”2,
brackets “(” and “)”, conjunction “∧”, negation “¬” and the existential quantifier “∃”. We also
use the necessary symbols to write sequences of variables (vim : m ∈ I), for any indexing set I ⊆ α.
We assume that all of these symbols are part of the logic Lβ

α itself.

The set of formulas Fm of L is the smallest set that satisfies:

(a) Fm contains each basic formula of L, where the basic formulas are the following two types
of formulas:

2It is also important to note that the equality symbol is always assumed, even if β ≤ 2. Therefore, the set of
formulas is not empty unless L = ∅ and α = 0.
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(i) The equalities vi = vj , for any i, j ∈ α.
(ii) R(vim : m < rank(R)), for any relation symbol R.

(b) Fm contains (φ ∧ ψ), (¬φ) and (∃viφ), for each φ,ψ ∈ Fm.

We use the usual conventions for dropping brackets in FOL, e.g., we may drop the outside brackets
of a formula. We also use the following abbreviations:

• If P is a sentential constant, then we just write P instead of P ().
• If R is a relation symbol of finite positive rank, say k, then we write R(vi0 , . . . , vik−1

) instead
of R(vim : m < k).

• We use disjunction, implication, equivalence and universal quantifier as:

φ ∨ ψ def
= ¬(¬φ ∧ ¬ψ) φ→ ψ

def
= ¬(φ ∧ ¬ψ)

φ↔ ψ
def
= (φ→ ψ) ∧ (ψ → φ) ∀vi φ

def
= ¬(∃vi ¬φ).

• We also use grouped conjunction and disjunction: Empty disjunction is defined to be φ∧¬φ
and empty conjunction is defined to be φ∨¬φ (for any arbitrary but fixed formula φ ∈ Fm)3.
Let φ0, . . . , φm ∈ Fm, then∨
0≤i≤m

φi
def
=

(
. . . (φ0 ∨ φ1) ∨ · · ·φm

)
and

∧
0≤i≤m

φi
def
=

(
. . . (φ0 ∧ φ1) · · · ∧ φm

)
.

Let us note that our choice of restricted vocabulary excludes some logics, such as intuitionistic logic,
where ∨ is not definable from ∧ and ¬. Moreover, our design herein does not allow us to recover
the logic Lβ

α from a given language L, but this is not important for us, since the logic Lβ
α is fixed

throughout the paper.

2.2. The semantics of Lβ
α. A model M for language L is a non-empty set M enriched with

operations RM ⊆ M rank(R), for each R ∈ L (for a sentential constant P , PM ⊆ M0 = {∅}).4 An
assignment in M is a function τ that assigns for each variable an element of the set M . Let
φ ∈ Fm be any formula. The satisfiability relation M, τ |= φ is defined recursively as follows:

M, τ |= R(vim : m < rank(R)) iff (τ(vim) : m < rank(R)) ∈ RM, 5

M, τ |= vi = vj iff τ(vi) = τ(vj),

M, τ |= φ ∧ ψ iff M, τ |= φ and M, τ |= ψ,

M, τ |= ¬φ iff M, τ ̸|= φ,

M, τ |= ∃vi φ iff there is a ∈M such that M, τ [vi 7→ a] |= φ,

where τ [vi 7→ a] is the assignment which agrees with τ on every variable except τ [vi 7→ a](vi) = a.
The cardinality of M is defined to be the cardinality of M . A formula φ is said to be true in M, in
symbols M |= φ, iff M, τ |= φ, for every assignment τ in M. A formula φ is said to be a tautology
iff it is true in every model for L. The theory of M is defined as:

Th(M)
def
= {φ ∈ Fm : M |= φ}.

3These are non-deterministic definitions; ∃v0(v0 ̸= v0) for the empty disjunction and ∃v0(v0 = v0) for the empty

conjunction could be better ones, but these deterministic definitions require the assumption α ≥ 1.
4So the meaning PM of a sentential constant P can be either true (T = {∅}) or false (F = ∅).
5If rank(P ) is 0, then (τ(vim ) : m < rank(P )) is the empty sequence ∅. Hence M, τ |= P iff PM is true.



6 KHALED ET AL.

We say that two models M and N for language L are isomorphic iff there is a bijection f :M → N
between their underlying sets that respects the meaning of the relation symbols, i.e., for each R ∈ L,

(ai : i < rank(R)) ∈ RM ⇐⇒ (f(ai) : i < rank(R)) ∈ RN.

2.3. Theories in the logic Lβ
α.

Definition 2.1. A theory T is a pair (L, A), where L is a language and A ⊆ Fm is a subset of its
set of formulas.

We use the same superscripts and subscripts for theories and their corresponding languages. For
example, if we write T ′ is a theory, then we understand that T ′ is a theory of language L′ whose
set of formulas is Fm′. For simplicity, we will loosely assume that a theory T is a set of formulas,
but we know that a language is given in the background. In this sense, we may assume that the
same theory can be given in different languages, or in different logics.

A model for theory T is a model for L in which every ψ ∈ T is true. We say that theory T is
consistent iff there is at least one model for T .

Definition 2.2. Let T be a theory and let κ be any cardinal. The spectrum of T , in symbols
I(T, κ), is the number of its different models (up to isomorphism) of cardinality κ. This number is
defined to be ∞ if T has infinitely many non-isomorphic models of cardinality κ.

We say that a formula φ is a consequence of theory T , in symbols T |= φ, iff φ is true in every
model for T . With this definition, one may have: if T |= φ, then T |= ∀viφ, but one does not have:
if T ∪ {φ} |= ψ then T |= φ → ψ. Kit Fine [Fine, 1985, p. 65] calls such an approach ‘truth to
truth’ rather than ‘case to case’. The set of consequences of theory T is defined as follows:

Cn(T )
def
= {φ ∈ Fm : T |= φ}.

Definition 2.3. Two theories T1 and T2 are called logically equivalent, in symbols T1 ≡ T2, iff
they have the same consequences, i.e., Cn(T1) = Cn(T2).

2.4. More notions for theory-equivalence. A translation of language L1 into language L2 is
a map tr : Fm1 → Fm2 such that the following are true for every φ,ψ ∈ Fm and every vi, vj .

• The free variables of tr(φ) are among the free variables of φ.
• tr(vi = vj) is vi = vj .
• tr commutes with the Boolean connectives:

tr(¬φ) = ¬tr(φ) and tr(φ ∧ ψ) = tr(φ) ∧ tr(ψ).

• Finally, tr(∃vi φ) = ∃vi tr(φ).6

6In the case of ordinary first order logic (when α = β = ω), to define a translation tr : Fm1 → Fm2, it suffices to

define tr on the basic formulas in Fm1 of the form R(v0, . . . , vm−1). Then, using Tarski’s substitution observation,
we can define

tr(R(vi0 , . . . , vim−1 )) = ∃y0(y0 = vi0 ∧ · · · ∧ ∃ym−1(ym−1 = vim−1∧
∃v0(v0 = y0 ∧ · · · ∧ ∃vm−1(vm−1 = ym−1 ∧ tr(R(v0, . . . , vm−1)))))),

where yi = vl+i and l is the maximum of 0, . . . ,m − 1, i0, . . . , im−1. This can be extended in a unique way to a

translation that covers the whole Fm1.
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Definition 2.4. Suppose that T1 and T2 are theories in languages L1 and L2, respectively, and tr
is a translation of L1 into L2. The translation tr is said to be an interpretation of T1 into T2 iff
it maps consequences of T1 into consequences of T2, i.e., for each formula φ ∈ Fm1,

T1 |= φ =⇒ T2 |= tr(φ).

(a) An interpretation tr of T1 into T2 is called a faithful interpretation of T1 into T2 iff for each
formula φ ∈ Fm1,

T1 |= φ ⇐⇒ T2 |= tr(φ).

(b) An interpretation tr12 of T1 into T2 is called a definitional equivalence between T1 and T2
iff there is an interpretation tr21 of T2 into T1 such that

• T1 |= tr21
(
tr12(φ)

)
↔ φ,

• T2 |= tr12
(
tr21(ψ)

)
↔ ψ.

for every φ ∈ Fm1 and ψ ∈ Fm2. In this case, tr21 is also a definitional equivalence.

Definition 2.5. Two theories T1 and T2 are said to be definitionally equivalent, in symbols
T1 ⇄ T2, iff there is a definitional equivalence between them.

In the literature, there are several ways to define definitional equivalence, e.g., [Andréka et al., 2005],
[Barrett and Halvorson, 2016], [Japaridze and Jongh, 1998] and [Pinter, 1978]. Here, we use a vari-
ant of the definition in [Henkin et al., 1985, Definition 4.3.42 and Theorem 4.3.43]. Our notion here
for definitional equivalence was shown to be an equivalence relation [Lefever and Székely, 2018b],
this will play a role in the following sections. For a discussion on the different definitions of defi-
nitional equivalence, see [Lefever and Székely, 2018b], and we refer to [Visser, 2006] for a category
theory based discussion.

Remark 2.6. Let T1 and T2 be two theories and suppose that tr12 : Fm1 → Fm2 is a definitional
equivalence between T1 and T2, then tr12 is also a faithful interpretation.

Definition 2.7. Let T1 and T2 be two theories. We say that T2 is a conservative extension of
T1, in symbols T1 ⊑ T2, iff Fm1 ⊆ Fm2 and, for all φ ∈ Fm1, T2 |= φ ⇐⇒ T1 |= φ.

We note that T1 ⊑ T2 iff the identity translation id : Fm1 → Fm2 is a faithful interpretation. It is
also worth mentioning that T1 ⊑ T2 ⇐⇒ T1 ≡ Cn(T2) ∩ Fm1.

3. Cluster networks & Step distance

Now, we introduce a general way of defining a distance on any given class X. We note that our
target is to define distances on the class of all theories, thus we need to work with classes which are
not necessarily sets.7

Definition 3.1. By a cluster (X,E) we mean a nonempty class X equipped with an equivalence
relation E.

We are interested in distances according to which some different objects are indistinguishable.
Indeed, it is natural to treat equivalent theories as if they were of distance 0 from each other. As
we mentioned in the introduction, there are several notions of equivalence between theories. Such
equivalence thus can be represented in the cluster of theories by the relation E.

7All definitions in this section can be formulated within von Neumann–Bernays–Gödel set theory.
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Definition 3.2. A cluster network is a triple (X,E, S), where (X,E) is a cluster and S is a
symmetric relation on X.

Given a cluster network (X,E, S). A path leading from x ∈ X to x′ ∈ X in (X,E, S) is a finite
sequence b1, . . . , bm of 0’s and 1’s such that there is a sequence x0, . . . , xm of members of X with
x0 = x, xm = x′ and, for each 1 ≤ i ≤ m,

bi = 0 =⇒ xi−1E xi and bi = 1 =⇒ xi−1 S xi.

The length of this path is defined to be
∑m

i=1 bi. Two objects x, x′ ∈ X are connected in (X,E, S)
iff there is a path leading from one of them to the other in (X,E, S).

Definition 3.3. Let X = (X,E, S) be a cluster network. The step distance on X is the function
dX : X ×X → N ∪ {∞} defined as follows. For each x, x′ ∈ X:

• If x and x′ are not connected in (X,E, S), then dX (x, x′)
def
= ∞.

• If x and x′ are connected in (X,E, S), then

dX (x, x′)
def
= min{k ∈ N : ∃ a path leading from x to x′ whose length is k}.

The equivalence relation E represents pairs that cannot be distinguished by the step distance, while
the symmetric relation S represents the pairs of objects that are (at most) one step away from each
other. The step distance then counts the minimum number of steps needed to reach an object
starting from another one.

Example 3.4. Let X be any class, let E be the identity relation on X, and let S = X ×X. Then,
X = (X,E, S) is a cluster network and its step distance is the following discrete distance:

dX (x, x′) =

{
0 if x = x′,

1 if x ̸= x′.

Theorem 3.5. Let X = (X,E, S) be a cluster network and let dX : X × X → N ∪ {∞} be the
step distance on X . The following are true for each x1, x2, x3 ∈ X:

(a) dX (x1, x2) ≥ 0, and dX (x1, x2) = 0 ⇐⇒ x1E x2.
(b) dX (x1, x2) = dX (x2, x1).
(c) dX (x1, x2) ≤ dX (x1, x3) + dX (x3, x2),

(where addition with ∞ is defined in the natural way).
(d) If d(x, y) = n and m+ k = n, then there is a z ∈ X such that d(x, z) = m and d(z, y) = k.

Proof. Straightforward. □

Remark 3.6. Let X = (X,E, S) and X ′ = (X ′, E′, S′) be cluster networks such that X ⊆ X ′,
E ⊆ E′, and S ⊆ S′. Since every path in X is contained in X ′, it is easy to see that dX (x1, x2) ≥
dX ′(x1, x2) for each x1, x2 ∈ X.

Now, we use the above general settings to define distances between theories. Before we start,
we need the following convention: suppose that we are given two theories T and T ′ of the same
language. We write T ↽ T ′ iff there is φ ∈ Fm such that T ∪ {φ} ≡ T ′. We also write T ⇌ T ′

iff either T ↽ T ′ or T ′ ↽ T . Conventionally, we call the relation ↽ axiom adding, while the
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converse relation ⇀ is called axiom removal. It is easy to see that the following are true for any
theories T1, T2 and T3:

T1 ↽ T2 & T2 ↽ T3 =⇒ T1 ↽ T3,

T1 ≡ T2 & T2 ↽ T3 =⇒ T1 ↽ T3,

T1 ↽ T2 & T2 ≡ T3 =⇒ T1 ↽ T3.

Definition 3.7. Let T be a class of some theories (in the logic Lβ
α) and consider the cluster network

(T ,≡,⇌). We call the step distance on this cluster network axiomatic distance on T . This step
distance will be denoted by AdT .

Let T be a class of theories. We note the following: If there is a path between T, T ′ ∈ T in the
cluster network (T ,≡,⇌), then both T and T ′ must be formulated in the same language. In other
words, if T, T ′ are formulated on different languages, then AdT (T, T

′) = ∞. This is because, if
T ≡ T ′ or T ⇌ T ′, then L = L′.

Example 3.8. Suppose that α ≥ 1 or β ≥ 1. Let T be a class of theories. Let T, T⊥ ∈ T be two
theories formulated in the same language. Suppose that T is consistent while T⊥ is inconsistent.
Then, adding a contradiction to T ensures that AdT (T, T⊥) = 1. Consequently, if T, T ′ ∈ T are
formulated on the same language and an inconsistent theory T⊥ of that language is in T , then
AdT (T, T

′) ≤ 2 since we have T ⇀ T⊥ ↽ T ′.

Example 3.9. Let T be a class of theories. Let T, ∅L ∈ T be two theories formulated in the same
language L such that ∅L is the empty theory of L (i.e., empty set of formulas). Suppose that T is
finitely axiomatizable, then we have either

AdT (T, ∅L) = 1 or T ≡ ∅L.

Thus, in the class of all theories, the axiomatic distance between any two finitely axiomatizable
theories of the same language is ≤ 2.

Example 3.10. Suppose that α ≥ 3 and β ≥ 3. Let T be the set of all consistent theories of
binary relations, let TP be the theory of strict partial orders, and let TE be the theory of equivalence
relations. Then AdT (TP , TE) = 2. Clearly, AdT (TP , TE) ≥ 2 because none of TP or TE implies the
other, and, by Example 3.9 and Theorem 3.5 (c), AdT (TP , TE) ≤ AdT (TP , ∅) + AdT (∅, TE) = 2.

All these examples suggest that the axiomatic distance, in most of the cases, has restricted measures.
Let CONβ

α be the class of all consistent theories in Lβ
α. For simplicity, we will denote the axiomatic

distance in the class CONβ
α by Ad instead of AdCONβ

α
.

Proposition 3.11. Let T, T ′ ∈ CONβ
α be two theories with the same language L. Then the

axiomatic distance Ad(T, T ′) ≤ 3. Moreover, if T ̸≡ T ′ and they are complete, then Ad(T, T ′) = 2.

Proof. Let T, T ′ ∈ CONβ
α be two theories with the same language L. If T ≡ T ′, then Ad(T, T ′) = 0.

Otherwise, and without loss of generality, we may assume that there is a formula φ such that T ̸|= φ
and T ′ |= φ. We note that, since T ̸|= φ, the theory T ∪ {¬φ} is consistent. We define a theory W
on the language L as follows:

W
def
= {¬φ→ ψ : ψ ∈ T} ∪ {φ→ χ : χ ∈ T ′}.
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Theory W ∪ {¬φ} is consistent since T ∪ {¬φ} is so. Since T ′ |= φ, we find that W ∪ {φ} ≡ T ′.
We now have:

T ⇌ T ∪ {¬φ} ≡W ∪ {¬φ}⇌W ⇌W ∪ {φ} ≡ T ′.

Therefore, the axiomatic distance between T and T ′ in CONβ
α is at most 3. Now, suppose that

theories T and T ′ are complete and T ̸≡ T ′, then their axiomatic distance cannot be ≤ 1. Let φ
be as in our previous argument. By the completeness of T , it follows that T |= ¬φ. Consequently,

T ≡W ∪ {¬φ}⇌W ⇌W ∪ {φ} ≡ T ′,

which implies that the axiomatic distance between T and T ′ in CONβ
α is precisely 2. □

Corollary 3.12. Let T, T ′ ∈ CONβ
α. Then,

Ad(T, T ′) = ∞ ⇐⇒ T and T ′ are formulated in different langauges.

Theorem 3.13. Fix a language L for the logic Lβ
α. Let T ∈ CONβ

α be any theory on language L
and let ∅L be the empty theory on L. The following are true:

(1) Ad(∅L, T ) = 0 iff T is trivial (T ≡ ∅L).
(2) Ad(∅L, T ) = 1 iff T is finitely axiomatizable and non-trivial.
(3) Ad(∅L, T ) = 2 iff T is not finitely axiomatizable, but has a finitely axiomatizable consistent

extension.
(4) Ad(∅L, T ) = 3 iff T has no finitely axiomatizable consistent extension.

Proof. The proof of this is easy (given that the last item is the remaining case of the other items
by the result in Proposition 3.11). □

Example 3.14. Let PA stand for Peano Arithmetic with its usual axioms in the relation lan-
guage for arithmetic L. Then Ad(∅L,PA) = 3, because PA has no finitely axiomatizable consistent
extension, see the Ryll-Nardzewski Theorem [Ryll-Nardzewski, 1952].

The above results may point to the fact that the measure of distance Ad is of limited use, however
Theorem 3.13 suggests that Ad does capture a reasonably natural notion. It might be true that
the distance defined in this way does not give us much information on the nature of the axioms
separating two theories, adding any axiom is considered to be one step. One can overcome this
problem by giving weights to the axiom adding steps, e.g., considering the addition of certain kind
of axioms as two or more steps.

4. Conceptual distance

Now, we introduce the notion of conceptual distance by a careful translation of the algebraic idea,
described in the introduction, in terms of logic.

Definition 4.1. We say that theory T ′ is a one-concept-extension of theory T and we write
T ⇝ T ′ iff L′ = L∪{R}, for some relation symbol R, and T ⊑ T ′ (i.e., T ′ is a conservative extension
of T ). We also write T ↭ T ′ iff T ⇝ T ′ or T ′ ⇝ T , and in this case we say that T and T ′ are
separated by at most one concept8.

8One may think that there is a mismatch between this definition and the algebraic motivation discussed in the

introduction. In the case of FOL, the one-concept extension corresponds to the one-generator extension as described
on page 3. The reason is that R(vi0 , · · · , vin−1 ) is generated from R(v0, · · · , vn−1) (see Footnote 6). However, if
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Definition 4.2. Recall that ⇄ denotes definitional equivalence, see Definition 2.5. Let T be a
class of theories. The step distance induced by the cluster network (T ,⇄,↭) is called conceptual
distance on T and is denoted by CdT . In the case when T is the class of all theories in Lβ

α, we

denote the conceptual distance on T by Cdβα.

Let T be a class of theories and let T1, T2, T
′
1, and T

′
2 be members of T . An immediate observation

can be formulated as follows:

CdT (T1, T2) = 0 if T1 ⇄ T2, and CdT (T1, T2) = CdT (T
′
1, T

′
2) if T1 ⇄ T ′

1 and T2 ⇄ T ′
2.

Moreover, since logically equivalent theories are also definitionally equivalent by translating formulas
to themselves, conceptual distance has also the following two desirable properties:

CdT (T1, T2) = 0 if T1 ≡ T2, and CdT (T1, T2) = CdT (T
′
1, T

′
2) if T1 ≡ T ′

1 and T2 ≡ T ′
2.

By Remark 3.6, it is clear that Cdβα(T, T
′) ≥ Cdγα(T, T

′) for any ordinal β ≤ γ ≤ α + 1 and any
theories T and T ′ in Lβ

α. It is also apparent that an inconsistent theory is of an infinite conceptual
distance from any consistent theory, because relations ⇄ and ⇝ cannot make a consistent theory
inconsistent and also cannot make an inconsistent theory consistent. Now, we give more examples.

Theorem 4.3. Suppose that β ≥ 1. For every n ∈ N ∪ {∞}, there are theories T and T ′ in Lβ
α

such that Cdβα(T, T
′) = n.

Proof. Let L∞ = {R0, R1, . . .} be a language for Lβ
α that consists of infinitely many relation symbols

of arbitrary ranks less than β (such a language describes infinitely many different concepts). For
each k ∈ N, let Lk be the language that consists of the first k-many relation symbols of L∞, i.e.,

L0 = ∅ and Lk = {R0, . . . , Rk−1} if k ≥ 1,

and let T ⋆
k = ∅ be the empty theory on language Lk. It is clear that Cdβα(T

⋆
0 , T

⋆
n) ≤ n for each

n ∈ N∪ {∞}. To prove the other direction, we count models of cardinality 1. It is easy to see that
I(T ⋆

n , 1) = 2n. For any two theories T1 and T2,

(1) T1 ⇝ T2 =⇒ I(T2, 1) ≤ 2 · I(T1, 1)

because in a model of cardinality 1 there are at most two relations (of any rank). Therefore, we need

at least n-many steps to increase I(T ⋆
0 , 1) = 20 = 1 to I(T ⋆

n , 1) = 2n. Therefore, Cdβα(T
⋆
0 , T

⋆
n) = n as

desired. □

The theories we use in the above proof all have models of cardinality 1. In (5) of Theorem 4.9
below, we show what happens if the theories in question do not have models of size 1. First, we
need the following lemma.

Lemma 4.4. Suppose that α = β = ω. Let T1, T2 and T3 be theories such that

I(T1, 1) = I(T2, 1) = I(T3, 1) = 0.

Then, if T1 ⇝ T2 ⇝ T3, then there is a theory T such that T1 ⇝ T ⇄ T3.

R has, say, arity ω, then, e.g., R(v0, v1, · · · ) and R(v1, v2, · · · ) are separate generators (meaning that none of them
can be generated from the other). In fact, there is no mismatch here, because cylindric algebras correspond to logics

with restricted formulas, i.e., formulas where the variables appear in the atomic subformulas only in their natural
order. So formulas of the form R(v1, v2, · · · ) are not included.
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Proof. Suppose T1, T2 and T3 are as required in the statement of the lemma above, and assume
that T1 ⇝ T2 ⇝ T3. Then L3 = L1 ∪ {R,S} for some relation symbols R and S. Suppose that
rank(R) = n and rank(S) = m. Let l = max{n,m} + 2 (choosing l = max{n,m} + 1 is enough if

n,m ≥ 1). Let L+ def
= L3 ∪ {B} = L1 ∪ {R,S,B}, for some new relation symbol B of rank l. Every

model M for L3 can be extended to a model M+ for L+ by defining BM+

as follows:

BM+ def
=

{
(a0, . . . , al−1) ∈M l : there is an assignment τ for which

τ(v0) = a0, · · · , τ(vl−1) = al−1 and M, τ |= β
}
,

where

β(v0, . . . , vl−1)
def
=

(
R(v0, . . . , vn−1) ∧ vl−2 = vl−1

)
∨
(
S(v0, . . . , vm−1) ∧ vl−2 ̸= vl−1

)
.

Let L def
= L1 ∪ {B} and let

T
def
=

{
φ ∈ Fm : M+ |= φ, for every model M for T3

}
.

We will prove that T1 ⇝ T and T ⇄ T3. To prove that T1 ⇝ T , it is enough to show that T1 ⊑ T
(because L = L1 ∪ {B}). Let φ ∈ Fm1. We have

T1 |= φ ⇐⇒ T2 |= φ ⇐⇒ T3 |= φ ⇐⇒ T |= φ,

where the first two equivalences follow by the assumption T1 ⊑ T2 ⊑ T3, and the last equivalence
follows by the definition of T . To show that T ⇄ T3, we define translations tr : Fm → Fm3 and
tr′ : Fm3 → Fm as follows:

tr : B(v0, . . . , vl−2, vl−1) 7→ β(v0, . . . , vl−1) and

tr′ : R(v0, . . . , vn−1) 7→ ∃vn . . . ∃vl−1

(
B(v0, . . . , vl−2, vl−1) ∧ (vl−2 = vl−1)

)
tr′ : S(v0, . . . , vm−1) 7→ ∃vm . . . ∃vl−1

(
B(v0, . . . , vl−2, vl−1) ∧ (vl−2 ̸= vl−1)

)
We have defined tr and tr′ on specific basic formulas and these can be extended in a unique way to
their domains, see Footnote 6. Let M be a model for T3. By definition of M+,

(2) M+ |= B(v0, . . . , vl−1) ↔ β(v0, . . . , vl−1).

Thus, by (2), we have

M+ |= tr′(S(v0, . . . , vm−1)) ↔ ∃vm . . . ∃vl−1

(
B(v0, . . . , vl−2, vl−1) ∧ vl−2 ̸= vl−1

)
↔ ∃vm . . . ∃vl−1

(((
R(v0, . . . , vn−1) ∧ vl−2 = vl−1

)
∨(

S(v0, . . . , vm−1) ∧ vl−2 ̸= vl−1

))
∧ vl−2 ̸= vl−1

)
↔ ∃vm . . . ∃vl−1

(
S(v0, . . . , vm−1) ∧ vl−2 ̸= vl−1)

)
↔ S(v0, . . . , vm−1).

The last ↔ follows by the assumption that the cardinality of M is at least 2 (and hence the same
is true for M+). Similarly, M+ |= tr′(R(v0, . . . , vn−1)) ↔ R(v0, . . . , vn−1). Therefore, by the fact
that tr and tr′ are translations, it follows that

(3) M+ |= φ↔ tr(φ) and M+ |= ψ ↔ tr′(ψ)

for all φ ∈ Fm and ψ ∈ Fm3. By (3), it is not hard to see that tr and tr′ are definitional equivalences,
and the desired follows. □
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The above lemma is a direct consequence of the following elementary fact. In Lω
ω (under some

conditions), for any two relations R and S, there is a relation M such that M is definable in terms
of R and S and, conversely, both R and S are definable in terms of M , see [Goodman, 1943]. The
idea of the above proof is distilled from [Henkin et al., 1971, Theorem 2.3.22].

Corollary 4.5. Suppose that α = β = ω. Let T1, T2, . . . , Tn, for some n ≥ 2, be theories such that
I(Ti, 1) = 0, for each 1 ≤ i ≤ n. Then,

T1 ⇝ T2 ⇝ · · ·⇝ Tn =⇒ T1 ⇝ T ⇄ Tn for some theory T.

Proof. This can be proved by a simple induction on n. If n = 2, then we are obviously done.
Suppose that n ≥ 3 and T1 ⇝ T2 ⇝ · · ·Tn−1 ⇝ Tn. If by induction hypothesis we can assume that
there is T ′ such that T2 ⇝ T ′ ⇄ Tn, then T1 ⇝ T2 ⇝ T ′ ⇄ Tn. Therefore, by the Lemma 4.4,
there is theory T such that T1 ⇝ T ⇄ Tn. □

Proposition 4.6.

T1 ⇝ T ⇄ Tn for some theory T ⇐⇒ Tn faithfully interprets T1,

if α = β = ω and Tn is formulated on a finite language.

Proof. From left-to-right, the statement is clear because T faithfully interprets T1 since it is a
conservative extension of T1, and hence Tn also faithfully interprets T1 since T ⇄ Tn. From right-
to-left, we can find a theory T∗ whose language contains just one relation symbol and T∗ ⇄ Tn by
the trick used in the proof of Lemma 4.4. We have a faithful interpretation tr1∗ : T1 → T∗. Let

T̃∗ be T∗ expanded with the language of T1 using the faithful interpretation tr1∗. Then we have

T1 ⇝ T̃∗ ⇄ T∗ ⇄ Tn. □

Now we are going to investigate the connection between the spectrum of theories and conceptual
distance in Lω

ω. To do so, let us introduce some notations. Let L∅ denote the empty language,
i.e., the language of pure identity =. Let T ′ be a theory and L an arbitrary language. We define
the restriction of T ′ to L as

T ′|L
def
= {φ ∈ Fm′ ∩ Fm : T ′ |= φ}.

Remark 4.7. It is straightforward to check that, if α ≥ 1 and Fm ⊆ Fm′, then T ′ is a conserva-
tive extension of T ′|L and up to logical equivalence T ′|L is the only theory in language L whose
conservative extension is T ′.

Lemma 4.8. Suppose that α = β = ω. Let T1 and T2 be two arbitrary theories of countable
languages. Then

T1|L∅ = T2|L∅ ⇐⇒ (∀ cardinal κ)
[
I(T1, κ) ̸= 0 ⇐⇒ I(T2, κ) ̸= 0

]
.

Proof. For every n ∈ N, let us introduce formula Ψ(n) saying that there are exactly n-many objects:

Ψ(n) def
= ∃v0 ∃v1 · · · ∃vn−1

 ∧
0≤i ̸=j≤n−1

vi ̸= vj

 ∧ ∀vn

 ∨
0≤i≤n−1

vn = vi

 .



14 KHALED ET AL.

Let us first assume that T1|L∅ = T2|L∅ and let κ be any cardinal. Suppose first that κ is finite, then

T1 does not have a model of size κ iff T1 |= ¬Ψ(κ). But,

T1 |= ¬Ψ(κ) ⇐⇒ T2 |= ¬Ψ(κ)

as ¬Ψ(κ) ∈ Fm∅. Hence, T2 has a model of cardinality κ iff T2 has a model of cardinality κ. If κ
is infinite, then by Lövenheim–Skolem Theorem, T1 and T2 have models of cardinality κ iff they
have infinite models. Let us also introduce formulas Ψ(≤n) saying that there are at most n-many
objects:

Ψ(≤n) def
= ∀v0 ∀v1 · · · ∀vn

 ∨
0≤i ̸=j≤n

vi = vj

 .

Theory T1 has an infinite model iff T1 ̸|= Ψ(≤n) for all n ∈ N. Since Ψ(≤n) ∈ Fm∅,

T1 |= Ψ(≤n) ⇐⇒ T2 |= Ψ(≤n).

Hence, T1 has an infinite model and thus a model of cardinality κ iff T2 has such a model. Conse-
quently, I(T1, κ) ̸= 0 iff I(T2, κ) ̸= 0 for all cardinal κ.

The converse direction follows from the simple fact that the validity of a formula φ ∈ Fm∅ in a
model depends only on the cardinality of the model. □

Theorem 4.9. Suppose that α = β = ω. Let T1 and T2 be two theories formulated in countable
languages. Then,

(4) Cdωω(T1, T2) <∞ =⇒ (∀ cardinal κ)
[
I(T1, κ) ̸= 0 ⇐⇒ I(T2, κ) ̸= 0

]
.

If T1 and T2 are formulated in finite languages, then the converse of (4) is also true and

(5)
[
Cdωω(T1, T2) <∞ and I(T1, 1) = I(T2, 1) = 0

]
=⇒ Cdωω(T1, T2) ≤ 2.

Proof. Since the validity of formulas of the empty language L∅ is preserved under conservative
extensions and definitional equivalences, we have

(6) Cdωω(T1, T2) <∞ =⇒ T1|L∅ = T2|L∅ .

Hence, by Lemma 4.8, T1 has a model of cardinality κ iff T2 has such a model because T1 and T2
are formulated on countable languages.

To prove the converse of (4), let us assume that T1 and T2 are formulated in finite languages and
that, for every cardinal κ, T has a model of cardinality κ iff T ′ has such a model. By Lemma 4.8,
we have T1|L∅ = T2|L∅ . Let T∅ := T1|L∅ = T2|L∅ . Thus, by Remark 4.7, T∅ ⊑ T1 and T∅ ⊑ T2.
Now, we can add the whole L to L∅ in finitely many steps, because there only finitely many relation
symbols in L, thus Cdωω(T∅, T1) <∞. Similarly, Cdωω(T∅, T2) <∞. Therefore,

Cdωω(T1, T2) ≤ Cdωω(T∅, T1) + Cdωω(T∅, T2) <∞.

Now suppose that Cdωω(T1, T2) < ∞ and I(T1, 1) = I(T2, 1) = 0, and that T1 and T2 are formulated
in finite languages. Then, by (6), we can introduce T∅ := T1|L∅ = T2|L∅ as before. We claim that

(7) Cdωω(T∅, T1) ≤ 1 and Cdωω(T∅, T2) ≤ 1.

To show (7), let us assume that L1 = {Ri : i < m}, for some finite m. If m = 0, then T∅ ≡ T1
and thus Cdωω(T∅, T1) = 0. Assume that m ̸= 0. Let L⋆

0 = {R0}, . . . ,L⋆
m−1 = {R0, . . . , Rm−1} and,

for each 0 ≤ i ≤ m − 1, T ⋆
i = T1|Fm⋆

i
. Hence, T∅ ⇝ T ⋆

0 ⇝ · · · ⇝ T ⋆
m−1 ≡ T1. Clearly, for each
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0 ≤ i ≤ m − 1, I(T ⋆
i , 1) = 0 because ¬Ψ(1) = ¬

(
∃v0 ∀v1 (v0 = v1)

)
is a consequence of T1, and

hence is a consequence of T ⋆
i . Thus, by Corollary 4.5, it follows that Cdωω(T∅, T1) ≤ 1. Similarly,

one can show that Cdωω(T∅, T2) ≤ 1. Therefore, Cdωω(T1, T2) ≤ Cdωω(T∅, T1) + Cdωω(T∅, T2) ≤ 2. □

Corollary 4.10. The conceptual distance between the theories of any two finite models of different
cardinalities is infinite. More precisely, if A and B are two finite models of different cardinality,
then Cdωω

(
Th(A),Th(B)

)
= ∞.

For instance, given two cyclic groups ⟨k1⟩ and ⟨k2⟩ of orders 5 and 7, respectively, the conceptual
distance between the theories of these groups is ∞. This might seem strange; these theories are
about similar structures. But if we look carefully at the statement of the above corollary, we
will find that it talks about theories of structures, not structures themselves. In other words, the
conceptual distance between the theories of ⟨k1⟩ and ⟨k2⟩ cannot be granted as a distance between
these two groups as algebraic structures. Instead, this conceptual distance can be considered to be
a distance between the Lindenbaum-Tarski algebras of the theories of these groups, which are of
course of different nature than the groups themselves.

Corollary 4.11. There are infinitely many theories that are, in terms of conceptual distance,
infinitely far from each other in Lω

ω.

Theorem 4.12. Let CCω
ω be the class of all complete and consistent theories in Lω

ω. Then

Cdωω(T1, T2) = CdCCω
ω
(T1, T2)

for all T1, T2 ∈ CCω
ω.

Proof. Let T1, T2 ∈ CCω
ω. Then, clearly, Cdωω(T1, T2) ≤ CdCCω

ω
(T1, T2). In this proof, let us denote

that theory T̃ is a complete and consistent extension of theory T in the same language as T ⊆cc T̃ .
We are going to show the converse inequality using the following three simple facts:

a.) If T ⇄ T ′ and T ⊆cc T̃ , then there is T̃ ′ ∈ CCω
ω such that T ′ ⊆cc T̃

′ and T̃ ⇄ T̃ ′.

We can take T̃ ′ :=
{
tr(φ) : φ ∈ T̃

}
, where tr is the interpretation of T to T ′ showing T ⇄ T ′.

b.) If T ⇝ T ′ and T ⊆cc T̃ , then there is T̃ ′ ∈ CCω
ω such that T ′ ⊆cc T̃

′ and T̃ ⇝ T̃ ′.

We can take T̃ ′ to be any complete and consistent extension of T̃ ∪ T ′. We have that T̃ ∪ T ′ is
also consistent because otherwise there was a formula φ in the language of T such that T ′ |= φ and

T̃ |= ¬φ, but then T ̸|= φ contradicting that T ′ is a conservative extension of T .

c.) If T ⇝T ′ and T ⊆cc T̃ , then there is T̃ ′ ∈ CCω
ω such that T ′ ⊆cc T̃

′ and T̃ ⇝̃T ′.

We can take T̃ ′ to be the restriction of T̃ to the language to T ′.

Using a.), b.) and c.), any chain of theories from T1 to T2 realizing Cdωω(T1, T2) can be replaced
step-by-step with one that contains only complete theories and represents the same distance. Hence
Cdωω(T1, T2) ≥ CdCCω

ω
(T1, T2). □
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5. Conceptual distance in physics

Each physical theory is established based on some preliminary decisions. These decisions are sug-
gested by the accumulation and the assimilation of new knowledge. The methods used to improve
physical theories are intuitively conceived and applied in a fruitful way, but many obvious ambigui-
ties have appeared. To eliminate these ambiguities, it was critical to introduce the logical foundation
of the physical theories.

Even today the logic based axiomatic foundation of physical theories is intensively investigated by
several research groups. For example, the Andréka–Németi school axiomatizes and investigates spe-
cial and general relativity theories within ordinary first order logic, see, e.g., [Andréka et al., 2002],
[Andréka et al., 2004] and [Andréka et al., 2012]. For similar approaches related to other physical
theories, see, e.g., [Baltag and Smets, 2005] and [Krause and Arenhart, 2017].

Following the tradition of Andréka–Németi school, two theories ClassicalKin and SpecRel are formu-
lated in ordinary first order logic Lω

ω to capture the intrinsic structures of classical and relativistic
kinematics. For the precise definitions of these theories, one can see [Lefever and Székely, 2018a,
p.67 and p. 69]. In this section, we will investigate the conceptual distance between these two
theories.

In [Lefever, 2017] and [Lefever and Székely, 2018a], it was shown that these two theories can be
turned definitionally equivalent by the following two concept manipulating steps:

(1) adding the concept of an observer “being stationary” to the theory of relativistic kinematics
SpecRel, and

(2) removing the concept of observers “not moving slower than light” from the theory of classical
kinematics ClassicalKin.

Then, it was shown that even if observers “not moving slower than light” are removed from
ClassicalKin the resulting theory remains definitionally equivalent to ClassicalKin and hence adding
only the concept of “being stationary” to SpecRel is enough to make the two theories equivalent.
Thus, it follows that the conceptual distance between relativistic and classical kinematics is 1.

Theorem 5.1. Classical and relativistic kinematics are distinguished from each other by only one
concept, namely the existence of some distinguished observers captured by formula (8) below, i.e.,
Cdωω(ClassicalKin,SpecRel) = 1.9

Proof. The key to this result is the surprising theorem stating that the only concept which needs
to be added to SpecRel to make it definitionally equivalent to ClassicalKin is a concept distin-
guishing a set of observers that are “being at absolute rest” as shown in [Lefever, 2017, p.72] and
[Lefever and Székely, 2018a, p.110]. Let E be a unary relation symbol corresponding to this basic
concept. Axiom AxPrimitiveEther, see [Lefever, 2017, p.46] and [Lefever and Székely, 2018a, p.87],
defines E as follows:

(8) ∃v0
[
IOb(v0) ∧ ∀v1

(
E(v1) ↔ [IOb(v1) ∧ st(v0, v1)]

)]
,

where IOb is a unary relation symbol that represents inertial observers and st(v0, v1) is a formula
in the language of SpecRel capturing the idea that observers v0 and v1 are stationary with respect

9It is worth noting that in the proof of Theorem 5.1, we add only a unary concept E to SpecRel to get a theory
definitionally equivalent to ClassicalKin.
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to each other. In this proof, we only need that st(v0, v1) is a formula with two free variables in the
language of SpecRel; its concrete definition plays no role here. Let

SpecRelE = SpecRel ∪ {AxPrimitiveEther}.

First, we need to prove that SpecRel⇝ SpecRelE. To do so, it is enough to show that SpecRelE is a
conservative extension of SpecRel, i.e., SpecRel ⊑ SpecRelE, because the languages of these theories
differ only in the unary relation symbol E. So, we need to show that for any formula ρ of the
language of SpecRel,

SpecRel |= ρ ⇐⇒ SpecRelE |= ρ.

Let ρ be an arbitrary formula of the language of SpecRel. Since SpecRel ⊆ SpecRelE, SpecRel |=
ρ implies SpecRelE |= ρ. We prove the other direction by proving that, if SpecRel ̸|= ρ, then

SpecRelE ̸|= ρ. Let M be a model of SpecRel. Since SpecRel |= ∃v0 IOb(v0), there exists an

a ∈ IObM. Let us fix such element a of IObM and let an extension M′ of M be defined by adding
the following relation to M:

EM′
=

{
b ∈ IObM : ∃ an assignment τ

[
τ(v0) = a, τ(v1) = b and M, τ |= st

]}
,

where stM is the binary relation defined by formula st(v0, v1) in model M. By construction, M′ is a
model of SpecRelE. Therefore, if M |= ¬ρ, then M′ |= ¬ρ, because M′ is an extension of M means
that Th(M) ⊑ Th(M′). Consequently, SpecRel ̸|= ρ implies SpecRelE ̸|= ρ, which is what we wanted
to prove. This completes the proof of SpecRel⇝ SpecRelE, and hence

Cdωω(SpecRel,SpecRel
E) ≤ 1.

By Corollary 9 in [Lefever, 2017, p.72] and [Lefever and Székely, 2018a, p.110], SpecRelE is defini-
tionally equivalent to ClassicalKin. Hence,

Cdωω(SpecRel
E,ClassicalKin) = 0.

Therefore,

Cdωω(SpecRel,ClassicalKin) ≤ Cdωω(SpecRel,SpecRel
E) + Cdωω(SpecRel

E,ClassicalKin) = 1.

Moreover, Cdωω(SpecRel,ClassicalKin) cannot be 0 since SpecRel and ClassicalKin are not definition-
ally equivalent, see Theorem 5 in [Lefever, 2017] or [Lefever and Székely, 2018a]. Consequently,

Cdωω(SpecRel,ClassicalKin) = 1

and thus the desired result is reached. □

There are several ways of capturing the structures of relativistic and classical kinematics in first
order logic. Let us now introduce another way to capture these theories. Let R be the set of all real
numbers. Let Ph ⊆ R4×R4 be such that (x̄, ȳ) ∈ Ph iff coordinate points x̄ and ȳ can be connected
by a light signal, i.e., if (x1 − y1)

2 − (x2 − y2)
2 − (x3 − y3)

2 − (x4 − y4)
2 = 0. Let S ⊆ R4 × R4

be the simultaneity relation, i.e., (x̄, ȳ) ∈ S iff x1 = y1. Consider the models R = ⟨R4,Ph⟩ and
N = ⟨R4,S,Ph⟩, these models capture the structure of special relativity and classical kinematics,
respectively.

Let TN = Th(N) and TR = Th(R). Note that TN is in fact a conservative extension of TR and the
conceptual distance between them is 1, i.e., Cdωω(TN, TR) = 1.
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Problem 1 (Hajnal Andréka). Let T be the class of all theories T such that TR is faithfully
interpreted into T and T is faithfully interpreted into TN. Is the following true: For all T ∈ T ,

Cdωω(TR, T ) + Cdωω(T, TN) = 1?

If the answer to the question to the above problem is yes, then no matter which classical (i.e.,
TN-definable, but not TR-definable) concept we add to special relativity (TR) we will get classical
kinematics (TN). That would be an interesting insight for better understanding the connection
between classical and relativistic concepts.

The investigation in this section opens so many questions: For any two concrete theories of physics,
what is the conceptual distance between them? By Theorem 5.1, relativistic and classical kinematics
are of conceptual distance one. However, the question “what is the distance between relativistic
and classical dynamics?” remains open. Another natural related open problem is the following.

Problem 2 (Jean Paul Van Bendegem). What is the conceptual distance between classical and
statistical thermodynamics?

Of course, any answer to the above problems depends on the chosen axiomatizable theories capturing
the physical theories in question. For an axiomatic approach of these thermodynamics theories, one
can see, e.g., [Carathéodory, 1909], [Cooper, 1967] and [Lieb and Yngvason, 2000].

6. Concluding Remarks

We have introduced a general framework to investigate measures of distances between formal the-
ories, and we investigated some basic properties of two natural examples for concrete distances.
One is based on counting axioms separating logically non-equivalent theories. The other is based
on counting concepts separating definitionally non-equivalent theories.

We have found that, even though it is probably the most natural idea, counting axioms does not
give us much information about the distance between theories. More precisely, we have shown that
axiomatic distance between two theories formulated in the same language is at most 3, and it is
exactly 2 if the theories are complete but not logically equivalent.

Counting concepts is much more subtle and informative. We have shown that conceptual distance
has a full range, i.e., any possible distance is realized. In ordinary first order logic, we found that
theories formulated in finite languages are of finite conceptual distance from each other if they have
models over exactly the same cardinals. Consequently, there are infinitely many theories which are
conceptually infinitely far from one another.

Are the notions introduced here the right ones? Do we get useful notions of distance in this
way? Does this approach really contribute to our understanding of theories in physics (or of other
sciences)? We do not know. These ideas are new and we need to work with them and develop them
further before we can really assess their worth. What we do know is that it is worth developing
a working framework in which one can tell how far certain nonequivalent theories are from each
other. In this paper, we tried to lay down the foundations and to initiate this research direction.
Working in this direction may provide a “logical network” conception of the unity of physics.

To test or refine these notions, to learn which notion of theory-distance will be the most useful, and
to understand how useful investigating distances between theories is, we need further investigations.
Of course, there may be other reasonable ideas that may be worth considering. For example, it
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may be natural to check whether using (certain kinds of) interpretations as steps could lead to a
useful notion of distance or not.

Although the problems introduced at the end of Section 5 and our result that relativistic and
classical kinematics are of conceptual distance 1 from each other already indicates that the notion
of conceptual distance might be useful to understand connections between scientific theories. It
is worth noting that probably not just their distance but also the shortest paths connecting two
theories in the corresponding cluster network is interesting.

Even though our framework is quite general, one may wish to generalize it even further. For
example, in several cases, it might be natural not to assume the symmetry of distances between
theories. For example, any inconsistent theory is understood to be of axiomatic distance 1 from any
consistent theory; we just need to add a contradiction as an axiom. But starting from an inconsistent
theory, we can never reach a consistent one by adding axioms; so considering this distance to be
∞ seems more natural. By dropping the symmetry requirement from our Definition 3.2, one can
easily generalize our framework to investigate these kinds of “directed” distances.

Another reasonable way to generalize our framework is to define bi-directed distances or multi-
directed distances where the minimal steps can be determined by two or more relations. For
example, it might be natural to try introducing a “bi-directed conceptual distance” that measures
the minimum number of concepts needed to be added to or removed from a theory to reach another
one up to definitional equivalence. We already have a notion for concept adding. So only a notion of
concept removal is needed. The way the concept of faster-than-light observers was removed from the
theory capturing classical kinematics in [Lefever, 2017] and [Lefever and Székely, 2018a] might be a
good starting point to find such a notion of concept removal. Similarly, one may desire to introduce
and investigate a bi-directed axiomatic distance where there are distinct steps for removing and/or
adding an axiom.

One area of study that has a close relationship with the notion of conceptual distance is that of
complexity. As we know, complexity, also can be measured in several ways: Turing complexity, in
terms of the analytic hierarchy, and so on. If one theory is more complex than another in one of
these measures, then it is natural to investigate the relationship between that and the distances we
look at here. Some of the significance of the present work might be in its relationship to complexity
theory. This is a subject of future investigation.

The idea of having a notion of distance between theories (of the same nature) seems applica-
ble in any science. In computer science, programming languages and other systems can be seen
as axiomatized theories. For more details about this, see, e.g., [Floyd, 1967], [Hoare, 1969] and
[Meyer and Halpern, 1982]. Hence, it seems also natural to search for the best fit notion of equiv-
alence between these theories. Developing this may give us insight to determine what can be one
step difference between two such theories. Having these in mind, a distance can then be defined in
the same way as section 3 herein. The novelty here would be in choosing such equivalence and one
step relation in a way that guarantees that the corresponding step distance is applicable.

Our work and approach leaves it open what we chose to do next in our investigations concerning
the equivalence of theories and the distance between theories. We can change the languages of
the theories; moving from FOL to another formal language. We can change the concept used to
measure distance (axioms, concepts and so on). We can change the area of research we investigate
(physics, mathematical theories, computer science languages and so on). It is in trying out the
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ideas presented here, in these new directions that we gain new insights, and refine the techniques
and definitions started here.
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in cylindric algebras and definability in finite variable logic. Algebra Universalis, 61(3):261–282.
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[Andréka and Németi, 2017] Andréka, H. and Németi, I. (2017). How many varieties of cylindric algebras are there.

Trans. Amer. Math. Soc., 369:8903–8937.
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