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Abstract
For simplicity, most of the literature introduces the concept of defini-

tional equivalence only for disjoint languages. In a recent paper, Barrett
and Halvorson introduce a straightforward generalization to non-disjoint
languages and they show that their generalization is not equivalent to in-
tertranslatability in general. In this paper, we show that their generalization
is not transitive and hence it is not an equivalence relation. Then we intro-
duce another formalization of definitional equivalence due to Andréka and
Németi which is equivalent to the Barrett–Halvorson generalization in the
case of disjoint languages. We show that the Andréka–Németi generaliza-
tion is the smallest equivalence relation containing the Barrett–Halvorson
generalization and it is equivalent to intertranslatability, which is another
definition for definitional equivalence, even for non-disjoint languages. Fi-
nally, we investigate which definitions for definitional equivalences remain
equivalent when we generalize them for theories in non-disjoint languages.

Keywords: First-Order Logic · Definability Theory · Definitional Equiva-
lence · Logical Translation · Logical Interpretation

1 Introduction

In mathematics and philosophy of science, there exist several approaches to
answer the question “when are two theories, which at first may seem different
or even contradictory, the same?” A first and straightforward answer is that
two theories are the same if they are logically equivalent, which means that
the consequences of their axioms are identical. A classic example of this is Eu-
clidean geometry using Euclids’s fifth postulate1 and Euclidean geometry us-
ing Playfair’s axiom.2 The postulate by Euclid and the axiom of Playfair are by

1See (Heath 1956, Vol. 1 p. 190).
2See (Playfair 1846, p. 29).
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themselves not logically equivalent, but in combination with the other axioms
of Euclidean geometry, their consequences are the same.

In this paper, we define theories by their set of axioms or postulates. If we
however would, as some authors do, assume that theories are closed under con-
sequence, then logical equivalence becomes identity. Logical equivalence may
however be too strict, because theories can be expressed in different languages.
To remedy this, other equivalences between theories have been proposed, such
as definitional equivalence,3 many-sorted definitional equivalence4 and cate-
gorical equivalence. For a comparison in terms of category theory between def-
initional equivalence, bi-interpretability, mutual interpretability and sentential
equivalence, we refer to (Visser 2006).

In the current paper, we discuss definitional equivalence,5 and the different
ways to define it. A well-known classic example of definitional equivalence is
the equivalence between the theory of Boolean Algebras in the language ∧, ∨,
¬, 0, 1 and the theory of Complemented Bounded Distributive Lattices in the
language ≤. Since those theories use different languages, they cannot prove
each other’s theorems. However, ∧, ∨, ¬, 0, 1 can be defined in terms of ≤, and
the other way round≤ can be defined in the language of Boolean Algebras; and
in this common language both theories can prove the same theorems.

The idea behind definitional equivalence is that extending a theory by defi-
nitions (i.e., introducing formula abbreviations) does not change the theory, but
only its presentation (i.e., its language). With this intuition it is natural to con-
sider theories having a common definitional extensions as one theory presented
differently. Following Andréka and Németi’s Definition 4.2 from (Andréka and
Németi 2014), we are going to introduce definitional equivalence as the smallest
equivalence relation containing definitional extension.6

Even though the intuition that we cannot really change a theory by adding
definitions is clear, one may be surprised when learning that theories contra-
dicting each other can be definitionally equivalent. As an illustration and expla-
nation why that is a desired feature, consider the following example: suppose
one author would rewrite the theory of subatomic particles, but consistently

3To avoid confusion, we call the non-transitive variant of definitional equivalence “definitional
mergeability”; see Definition 6.

4In (Andréka et al. 2002, Section 6.3), (Madarász 2002, Section 4.3) and (Andréka et al. 2008,
Definition 2.4.1), definitional equivalence is generalized to many-sorted definability, where even
new entities can be defined and not just new relations between existing entities. In (Barrett and
Halvorson 2016b), where the corresponding many-sorted definitional mergeability is called “Morita
equivalence”, the relation between logical equivalence, definitional mergeability, many-sorted def-
initional mergeability and categorical equivalence is discussed.

5Definitional equivalence has also been called logical synonymity or synonymy, e.g., in (de Bouvère
1965a), (Visser 2006), (Friedman and Visser 2014) and (Visser 2015).

6More precisely, definitional equivalence is the symmetric transitive closure of definitional ex-
tension, see Definitions 4 and 5.
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switch the words electron and proton. The “new” theory would contradict stan-
dard subatomic theory in many ways, using the criterion of logical equivalence
these two theories would not be the same. However, the differences between
these two theories would be only terminological, and physicists would soon
discover that by a simple translation of terms they could use the results of this
“new” theory in the same way as the standard theory despite the apparent con-
tradictions.

The concept of definitional equivalence was first introduced by Montague
in (Montague 1956), but there are already some traces of the idea in Quine’s
(Quine 1946) and in (Tarski et al. 1953) by Tarski, Mostowski and Robinson.
Early development of this concept was done in de Bouvère’s (de Bouvère 1965a)
and (de Bouvère 1965b). In philosophy of science, it was introduced by Gly-
mour in (Glymour 1970), (Glymour 1977) and (Glymour 1980). See Corcoran’s
(Corcoran 1980) for notes on the history of definitional equivalence. Defini-
tional equivalence preserves (in the case of finite signatures) important prop-
erties such as finite axiomatizability, decidability and categoricity; see (Pinter
1978) and (Visser 2006). Barrett and Halvorson’s (Barrett and Halvorson 2016a),
on which the present paper is partly a commentary, contains more references
to examples on the use of definitional equivalence in the context of philosophy
of science.

We have recently started in (Lefever and Székely 2018) to use definitional
equivalence to study the exact differences and similarities between theories
which are not equivalent, in that case classical and relativistic kinematics. In
that paper, we showed that there exists an interpretation of relativistic kinemat-
ics in classical kinematics, but not the other way round. We also showed that
special relativity extended with a “primitive ether” is definitionally equivalent
to classical kinematics. Those theories are expressed in the same language, and
hence have non-disjoint languages.

When studying competing theories,7 such as classical mechanics versus rel-
ativity theories, classical thermodynamics versus statistical thermodynamics,
or the phlogiston theory versus the compound theory in chemistry,8 the main
criterion to decide on which theory to chose is empirical adequacy: one theory
is better than another if it accounts for more of the data or phenomena than the
other. However, this is not always straightforward, since one theory may be bet-
ter suited to explain one part of the data or phenomena, and another theory may
be better suited to explain another part. A classic example of this is the transi-
tion from the Ptolemaic geocentric theory to the Copernican heliocentric theory,

7For a further discussion of comparing competing theories by introducing conceptual distances
based on definitional equivalence, see (Friend et al. 2018).

8See (Chang 2012) for a discussion of competing theories from chemistry in philosophy of sci-
ence.
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where the Ptolemaic theory initially provided in many cases more accurate pre-
dictions than the Copernican theory.9 This illustrates that empirical adequacy
as a criterion contains some degree of arbitrary. Therefore, we also need other
methods to study and compare theories than just empirical adequacy, such as
those discussed here. In the case of competing theories, an overlap of the lan-
guages can be expected. In general, it is easy to get rid of the overlap between
languages by using a disjoint renaming as introduced below in Definition 14
and as illustrated in (Lefever 2017). This however makes the notation heavier,
less natural and less intuitive. In some cases the overlap between the languages
may not as easily be avoided or may even be systematically important, for ex-
ample in the case of Fujimoto interpretability where a sub-vocabulary is kept
constant, see (Fujimoto 2010).

In Barrett and Halvorson’s (Barrett and Halvorson 2016a, Definition 2) and
(Barrett and Halvorson 2016b, Definition in §3.2 on p. 561) definitional equiv-
alence from Hodges’ (Hodges 1993, pp. 60-61) is generalized for non-disjoint
languages in a straightforward way. They show that their generalization, which
we call here definitional mergeability to avoid ambiguity, is not equivalent to in-
tertranslatability in general but only for theories in disjointly formulated lan-
guages. In this paper, we show in Theorem 1 below that definitional merge-
ability is not an equivalence relation because it is not transitive.10 We recall
Andréka and Németi’s Definition 4.2 from (Andréka and Németi 2014) which
is known to be equivalent to definitional mergeability for theories formulated in
disjoint languages. Then we show that the Andréka–Németi definitional equiv-
alence is the smallest equivalence relation containing definitional mergeability
and that it is equivalent to intertranslatability even for theories formulated in
non-disjoint languages. Actually, two theories are definitionally equivalent iff
there is a theory that is definitionally mergeable to both of them. Moreover, one
of these definitional mergers can be a renaming; see Theorem 4.

Theorem 4.2 of (Andréka and Németi 2014) claims without proof that (i)
definitional equivalence, (ii) definitional mergeability, (iii) intertranslatability
and (iv) model mergeability (see Definition 7 below) are equivalent in case of
disjoint languages. Here, we show that the equivalence of (i) and (iii) and that
of (ii) and (iv) hold for arbitrary languages, see Theorems 8 and 7. However,
since (i) and (ii) are not equivalent by Theorems 1 and 3, no other equivalence
of extends to arbitrary languages. Finally, we introduce a modification of (iv)
that is equivalent to (i) and (iii) for arbitrary languages, see Theorem 9.

9See Kuhn’s (Kuhn 1957).
10The non-transitivity of definitional mergeability in the case when new (sorts of) entities can

also be defined is already noted in (Andréka et al. 2008, §2.4 p. 55).
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2 Framework and definitions

For every theory T which might contain constants and functions, there is an-
other theory T ′ which is formulated in a languages containing only predicates
(relation symbols) and connected to T by the two central relations

4
≡ and →←

investigated in this paper, see (Barrett and Halvorson 2016a, Proposition 2 and
Theorem 1). Therefore, here we only consider languages containing only pred-
icates.

We use the following set of basic logical symbols Log = { ∃,∧,¬, (, ),= } and
assume that there is a countable set Var = { v1, v2 . . . , vi, . . . } of variables in a
fixed order. A signature11 of language L is a pair 〈PredL, arL〉 of the set PredL
of predicates12 (relation symbols) and the arity function arL which assigns an
arity13 to elements of PredL. Formulas of language L are built up recursively
from alphabet PredL ∪ Log ∪ Var in the usual way and their set is denoted by
FormL. A theory T of language L is a set of formulas of L, that is, T ⊆ FormL.

Convention 1. Whenever we talk about a theory, we always assume that there
is a fixed language corresponding to that theory. The languages corresponding
to theories Ti, T ′, etc. are respectively denoted by Li, L′, etc.

A model M = 〈M, 〈pM : p ∈ PredL〉〉 of language L consists of a non-empty
underlying set M , and for every predicate p of L, a relation pM ⊆Mn with the
arity arL(p) = n.14 Mod(T ) is the class of models of theory T ,

Mod(T )
def
= {M : M |= T}.

Definition 1. Two theories T1 and T2 are logically equivalent, in symbols

T1 ≡ T2,

iff15 they have the same class of models, i.e., Mod(T1) = Mod(T2).

Remark 1. It is worth noting that, by Gödel’s Completeness Theorem,≡ exten-
sionally corresponds to interderivability, i.e., T ≡ T ′ iff T ` ϕ′ for all ϕ′ ∈ T ′

and T ′ ` ϕ for all ϕ ∈ T .

Convention 2. Instead of using meta-variables, we refer to arbitrary elements
of Var by using indexes. When we would like to talk about n-many arbitrary
variables from Var, we use double indexes i1, . . . , in. Sometimes the list of vari-
ables vi1 , . . . , vin is abbreviated to v̄ and quantifiers ∀vi1 , . . . ,∀vin to ∀v̄.

11A signature is also called a vocabulary.
12Note that we allow PredL to be infinite.
13The arity is the number of variables in the relation, it is also called the rank, degree, adicity or

valency of the relation.
14The non-empty underlying set M is also called the universe, the carrier or the domain of M. Mn

denotes the Cartesian power of set M .
15iff abbreviates if and only if. It is denoted by↔ in the object languages (see remark 2 below) and

by⇔ in the meta-language.
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Definition 2. Semantics: let M be a model, letM be the non-empty underlying
set of M, let ϕ be a formula and let e : Var → M be an evaluation of variables,
then we inductively define that e satisfies ϕ in M, in symbols

M |= ϕ[e],

as:

1. For predicate p, M |= p(vi1 , vi2 , . . . , vin)[e] holds if(
e(vi1), e(vi2), . . . , e(vin)

)
∈ pM,

2. M |= (vi = vj)[e] holds if e(vi) = e(vj) holds,

3. M |= ¬ϕ[e] holds if M |= ϕ[e] does not hold,

4. M |= (ψ ∧ θ)[e] holds if both M |= ψ[e] and M |= θ[e] hold,

5. M |=
(
∃ vj ψ

)
[e] holds if there is an element b ∈M , such that M |= ψ[e′] if

e′(vj) = b and e′(vi) = e(vi) if i 6= j.

Let vi1 , vi2 , . . . , vin be the list of all free variables of ϕ in the order of their first
occurrence inϕ and let ā be a list a1, a2, . . . , an of elements ofM . ThenM |= ϕ[ā]

iff M satisfies16 ϕ for all (or equivalently some) evaluation e of variables for
which e(vij ) = aj for all j ∈ {1, 2, . . . , n}. That ϕ is true in M for all evaluations
of variables is denoted byM |= ϕ. For theory T ,M |= T abbreviates thatM |= ϕ

for all ϕ ∈ T .

Remark 2. We use ϕ∨ψ as an abbreviation for ¬ (¬ϕ∧¬ψ), ϕ→ ψ for ¬ϕ∨ψ,
ϕ↔ ψ for (ϕ→ ψ) ∧ (ψ → ϕ) and ∀vi ϕ for ¬∃ vi ¬φ.

Definition 3. Let L and L+ be two languages such that FormL ⊂ FormL+ . An
explicit definition of an n-ary predicate p ∈ PredL+ \ PredL in terms of L+ is a
formula of the form

∀v̄
(
p(v̄)↔ ϕ(v̄)

)
,

where ϕ ∈ FormL.17

Definition 4. A definitional extension18 of a theory T of language L to language
L+ is a theory T+ ≡ T ∪∆, where ∆ is a set of explicit definitions in terms of
L for each predicate p ∈ PredL+ \ PredL. In this paper,

T → T+ and T+ ← T

denote that T+ is a definitional extension of T .
16M |= ϕ[ā] can also be read as ϕ[ā] being true in M.
17Here v̄ gives the variables of p(v̄) in the order of occurrence and the free variables of ϕ are

among the variables of v̄ but not necessarily all of v̄.
18We follow the definition from (Andréka and Németi 2014, Section 4.1, p.36), (Hodges 1993,

p.60) and (Hodges 1997, p.53). In (Barrett and Halvorson 2016a, Section 3.1), the logical equivalence
relation is not part of the definition.
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We use ∆ij to denote the set of explicit definitions when the language Lj of
theory Tj is defined in terms of the language Li of theory Ti.

Definition 5. Two theories T , T ′ are definitionally equivalent, in symbols

T
4
≡ T ′,

iff there is a chain T1, . . . , Tn of theories such that T = T1, T ′ = Tn, and for all
1 ≤ i < n either Ti → Ti+1 or Ti ← Ti+1.

Remark 3. If a theory is consistent, then all theories which are definitionally
equivalent to that theory are also consistent since definitions cannot make con-
sistent theories inconsistent. Similarly, if a theory is inconsistent, then all theo-
ries which are definitionally equivalent to that theory are also inconsistent.

Definition 6. Let T1 and T2 be two arbitrary theories. T1 and T2 are definition-
ally mergeable, in symbols

T1 →
← T2,

iff there is a theory T+ which is a common definitional extension of T1 and T2,
i.e., T1 → T+ ← T2.

Remark 4. From Definitions 5 and 6, it is immediately clear that being defini-
tionally mergeable is a special case of being definitionally equivalent.

Lemma 1 below establishes that our Definition 6 of definitional mergeabil-
ity is equivalent to the definition for definitional equivalence in (Barrett and
Halvorson 2016a, Definition 2).

Lemma 1. Let T1 and T2 be two arbitrary theories. Then T1 →← T2 iff there are
sets of explicit definitions ∆12 and ∆21 such that T1 ∪∆12 ≡ T2 ∪∆21.

Proof. Let T1 →← T2, then there exists a T+ such that T1 → T+ ← T2. By the
definition of definitional extension, there exist sets of explicit definitions ∆12

and ∆21 such that T1 ∪∆12 ≡ T+ and T2 ∪∆21 ≡ T+, and hence by transitivity
of logical equivalence T1 ∪∆12 ≡ T2 ∪∆21.

To prove the other direction: let T1 and T2 be theories such that
T1 ∪∆12 ≡ T2 ∪∆21 for some sets ∆12 and ∆21 of explicit definitions. Let
T+ = T1∪T2∪∆12∪∆21. Hence T1∪∆12 ≡ T+ ≡ T2∪∆21 and T1 → T+ ← T2,
and therefore T1 →← T2. �

Convention 3. If theories T1 and T2 are definitionally mergeable and their lan-
guages are disjoint, i.e., PredL1

∩ PredL2
= ∅, we write

T1
∅
→← T2.
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Definition 7. Theories T1 and T2 are model mergeable,19 in symbols

Mod(T1) →← Mod(T2),

iff there is a bijection β between Mod(T1) and Mod(T2) that is defined along two
sets ∆12 and ∆21 of explicit definitions such that if M ∈ Mod(T1), then

• the underlying sets of M and β(M) are the same,

• the relations in β(M) are the ones defined in M according to ∆12 and vice
versa, the relations in M are the ones defined in β(M) according to ∆21.

Definition 8. Let L1 and L2 be two arbitrary languages. A translation

tr : FormL1 → FormL2

is a map from formulas of L1 to that of L2 which

• for all p ∈ PredL1
, maps every atomic formula p(v1, v2, . . . , vn) to a cor-

responding formula ϕp(v1, v2, . . . , vn) and maps p(vi1 , vi2 , . . . , vin) to the
appropriately substituted version20 of ϕp.

• preserves the equality, logical connectives, and quantifiers, i.e.,

– tr(vi = vj) is vi = vj ,

– tr(¬ϕ) is ¬ tr(ϕ),

– tr(ϕ ∧ ψ) is tr(ϕ) ∧ tr(ψ), and

– tr(∃ vi ϕ) is ∃ vi tr(ϕ).

Definition 9. Let T1 and T2 be theories. An interpretation tr12 of theory T1 in
theory T2 is a translation that maps consequences of T1 into consequences of T2,
i.e., T1 |= ϕ implies T2 |= tr12(ϕ) for all ϕ ∈ FormL1 .

It is easy to see that mutual interpretability does not imply definitional equiv-
alence, see e.g., (Visser 2006, §4.8.4) for some simple examples, which also show
that mutual interpretability does not even preserves decidability. Mutual de-
finability, when no models gets lost during the interpretation, does not imply
definitional equivalence either, see (Andréka et al. 2005). However, requiring
the equivalence of any formula and its the back and forth translation turns mu-
tual interpretability into a natural equivalent formulation of definitional equiv-
alence:

19We use the definition from Andréka and Németi in (Andréka and Németi 2014, p. 40, item
iv), which is a variant of the definition by Henkin, Monk, and Tarski in (Henkin et al. 1971, p. 56,
Remark 0.1.6).

20An appropriate built in mechanism of substitution is needed to avoid “collision of variables”,
see e.g., (Andréka and Németi 2014, p.37, footnote 34).
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Definition 10. Theories T1 and T2 are intertranslatable,21 in symbols

T1 � T2,

iff there are interpretations tr12 of T1 in T2 and tr21 of T2 in T1 such that

• T1 |= ∀v̄
(
ϕ(v̄)↔ tr21

(
tr12(ϕ(v̄))

))
• T2 |= ∀v̄

(
ψ(v̄)↔ tr12

(
tr21(ψ(v̄))

))
for every formulas ϕ(v̄) and formula ψ(v̄) of languages L1 and L2, respectively.

For a direct proof that intertranslatability is an equivalence relation, see e.g.,
(Lefever 2017, Theorem 1, p. 7). This fact also follows from Theorems 3 and 8
below.

Definition 11. The relation defined by formula ϕ in model M is:22

‖ϕ‖M def
=
{
ā ∈Mn : M |= ϕ[ā]

}
.

Definition 12. For every translation tr12 : FormL1 → FormL2 , let tr∗12 be the map
that maps model M = 〈M, . . .〉 of L2 to

tr∗12(M)
def
=
〈
M,
〈
‖tr12(pi)‖M : pi ∈ PredL1

〉 〉
,

that is all predicates pi ofL1 interpreted in model tr∗12(M) as the relation defined
by formula tr12(pi).

Lemma 2. Let M be a model of language L2, let ϕ be a formula of language L1,
and let e : Var → M be an evaluation of variables. If tr12 : FormL1

→ FormL2
is

a translation, then

tr∗12(M) |= ϕ[e]⇔M |= tr12(ϕ)[e].

Proof. We are going to prove Lemma 2 by induction on the complexity of ϕ. So
let us first assume that ϕ is a single predicate p of language L1.

Let ū be the e-image of the free variables of p. Then tr∗12(M) |= p[e] holds
exactly if tr∗12(M) |= p[ū]. By Definition 12, this holds iff〈

M,
〈
‖tr12(pi)‖M : pi ∈ PredL1

〉 〉
|= p[ū]. (1)

21In Henkin, Monk, and Tarski’s (Henkin et al. 1985, p. 167, Definition 4.3.42), definitional equiv-
alence is defined as intertranslatability. It can be argued that this is the more fundamental defini-
tion of definitional equivalence, because all known interpretation-based notions of equivalence of
theories can be put in a uniform format; see (Visser 2006).

22‖ϕ‖M is basically the same as the meaning of formula ϕ in model M, see (Andréka et al. 2001,
p. 194 Definition 34 and p. 231 Example 8).
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By Definition 11, ‖tr12(p)‖M =
{
ā ∈Mn : M |= tr12(p)[ā]

}
. So (1) is equivalent

to M |= tr12(p)[ū].

If ϕ is vi = vj , then we should show that

tr∗12(M) |= vi = vj [e]⇔M |= tr12(vi = vj)[e].

Since translations preserve mathematical equality by Definition 8, this is equiv-
alent to

tr∗12(M) |= (vi = vj)[e]⇔M |= (vi = vj)[e],

which holds because the underlying sets of tr∗12(M) and M are the same and
both sides of the equivalence are equivalent to e(vi) = e(vj) by Definition 2.

Let us now prove the more complex cases by induction on the complexity
of formulas.

• If ϕ is ¬ψ, then we should show that

tr∗12(M) |= ¬ψ[e]⇔M |= tr12(¬ψ)[e].

Since tr12 is a translation, it preserves (by Definition 8) the conectives, and
therefore this is equivalent to

tr∗12(M) |= ¬ψ[e]⇔M |= ¬ tr12(ψ)[e],

which holds by Definition 2 Item 3 since we have

tr∗12(M) |= ψ[e]⇔M |= tr12(ψ)[e]

by induction.

• If ϕ is (ψ ∧ θ), then we should show that

tr∗12(M) |= (ψ ∧ θ)[e]⇔M |= tr12(ψ ∧ θ)[e].

Since tr12 is a translation, it preserves (by Definition 8) the conectives, and
therefore tr12(ψ∧ θ) is equivalent to tr12(ψ)∧ tr12(θ), and hence the above
is equivalent to

tr∗12(M) |= (ψ ∧ θ)[e]⇔M |=
(
tr12(ψ) ∧ tr12(θ)

)
[e],

which holds by Definition 2 Item 4 because both

tr∗12(M) |= ψ[e]⇔M |= tr12(ψ)[e]

and
tr∗12(M) |= θ[e]⇔M |= tr12(θ)[e]

hold by induction.
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• If ϕ is ∃ vj ψ, then we should show that

tr∗12(M) |=
(
∃ vj ψ

)
[e]⇔M |= tr12

(
∃ vj ψ

)
[e]

holds. Since tr12 is a translation, it preserves (by Definition 8) the quanti-
fiers, and hence this is equivalent to

tr∗12(M) |=
(
∃ vj ψ

)
[e]⇔M |=

(
∃ vj tr12(ψ)

)
[e].

By Definition 2 Item 5, both sides of he equivalence hold exactly if there
exists an element b ∈M such that

tr∗12(M) |= ψ[e′]⇔M |= tr12(ψ)[e′],

where e′(vj) = b and e′(vi) = e(vi) if vi 6= vj , which holds by induction
because the underlying sets of tr∗12(M) and M are the same. �

Corollary 1. Let tr12 : FormL1
→ FormL2

be a translation. Then the following
two statements are equivalent:

• tr12 is an interpretation23 of theory T1 in theory T2

• tr∗12 maps all models of T2 to models of T1, i.e., tr∗12 : Mod(T2)→ Mod(T1).

Proof. Assume first that tr12 is an interpretation of theory T1 in theory T2. Let
M be a model of theory T2. We should prove that tr∗12(M) is a model of T1,
i.e., tr∗12(M) |= ϕ for every ϕ ∈ T1. By Lemma 2, it is enough to show that
M |= tr12(ϕ) for every ϕ ∈ T1, which is true since tr12 is an interpretation of
theory T1 in theory T2.

To prove the other direction, assume that tr∗12 maps all models of T2 to mod-
els of T1 and let T1 |= ϕ. We have to prove that T2 |= tr12(ϕ), i.e., M |= tr12(ϕ)

for every model M of T2. Since tr∗12 maps all models of T2 to models of T1, we
have tr∗12(M) ∈ Mod(T1). Hence tr∗12(M) |= ϕ. Then, by Lemma 2, we have that
M |= tr12(ϕ). This completes the proof since M was an arbitrary model of T2. �

Remark 5. Note that while tr12 is an interpretation of T1 in T2, tr∗12 translates
models the other way round fromMod(T2) toMod(T1). For an example illustrat-
ing this for an interpretation from relativistic kinematics in classical kinematics,
see (Lefever 2017, Chapter 7) or (Lefever and Székely 2018, Section 7).

Definition 13. Theories T1 and T2 are model intertranslatable, in symbols

Mod(T1) � Mod(T2),

iff there are translations tr12 : FormL1 → FormL2 and tr21 : FormL2 → FormL1 ,
such that tr∗12 : Mod(T2) → Mod(T1) and tr∗21 : Mod(T1) → Mod(T2) are bijec-
tions which are inverses of each other.

23In terms of the framework of (Visser 2006), tr12 is a contravariant functor from the category of
direct interpretations to the category of sets.
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Definition 14. Theory T and theory T ′ are disjoint renamings of each other, in
symbols

T
∅' T ′,

iff their languages L and L′ are disjoint, i.e., PredL ∩ PredL′ = ∅, and there is
an arity preserving bijection R∅LL′ : PredL → PredL′ , which naturally can be
extended to a bijection R̄∅LL′ : FormL → FormL′ , and T ′ =

{
R̄∅LL′(ϕ) : ϕ ∈ T

}
.

Remark 6. Note that disjoint renaming is symmetric but neither reflexive nor

transitive. Also, if T ∅' T ′, then T
∅
→← T ′, T →← T ′, T

4
≡ T ′, T � T ′, and if

PredL and PredL′ are not empty, then T 6= T ′.

3 Properties

Theorem 1. Definitional mergeability →← is not transitive. Hence it is not an
equivalence relation.

The proof is based on (Barrett and Halvorson 2016a, Example 5).24 Note that
the proof relies on the languages of theories T1 and T2 being non-disjoint.

Proof. Let p and q be unary predicates. Consider the following theories T1, T2
and T3 for which PredL1 = PredL2 = {p} and PredL3 = {q}:

T1
def
= { ∃! v1 v1 = v1, ∀v1 p(v1) }

T2
def
= { ∃! v1 v1 = v1, ∀v1 ¬ p(v1) }

T3
def
= { ∃! v1 v1 = v1, ∀v1 q(v1) }

T1 and T2 are not definitionally mergeable, since they do not have a common
extension as they contradict each other.25

Let us define T+
1 where q is defined in terms of T1 as p and let us define T+

3

where p is defined in terms of T3 as q, i.e.,

T+
1

def
= { ∃! v1 v1 = v1, ∀v1 p(v1), ∀v1

(
q(v1)↔ p(v1)

)
}

T+
3

def
= { ∃! v1 v1 = v1, ∀v1 q(v1), ∀v1

(
p(v1)↔ q(v1)

)
}.

Then T1 and T3 are definitionally mergeable because T1 → T+
1 , T3 → T+

3 ,
and T+

1 ≡ T
+
3 .

24Using a propositional constant (i.e., 0-ary relation) p, we can have the following smaller coun-
terexample: T1

def
= {p}, T2

def
= {¬p} and T3

def
= ∅.

25∃! is an abbreviation for “there exists exactly one”, i.e.,

∃! vi ϕ(vi)⇔ ∃ vi
(
ϕ(vi) ∧ ¬∃ vj

(
ϕ(vj) ∧ vi 6= vj

))
.
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Let us now define T+
2 where q is defined in terms of T2 as ¬ p and let us

define T×3 where p is defined in terms of T3 as ¬ q, i.e.,

T+
2

def
= { ∃! v1 v1 = v1, ∀v1 ¬ p(v1), ∀v1

(
q(v1)↔ ¬ p(v1)

)
}

T×3
def
= { ∃! v1 v1 = v1, ∀v1 q(v1), ∀v1

(
p(v1)↔ ¬ q(v1)

)
}.

Then T2 and T3 are definitionally mergeable because T2 → T+
2 , T3 → T×3 ,

and T+
2 ≡ T

×
3 .

Therefore, being definitionally mergeable is not transitive and hence not an
equivalence relation as T1 →← T3 →

← T2 but T1 and T2 are not definitionally
mergeable. �

Lemma 3. Definitional extension is a transitive relation, i.e.,

if T1 → T2 → T3, then T1 → T3.

Proof. By T1 → T2, there exists a set of explicit definitions ∆12 which defines all
predicates of the language of T2 by predicates from the language of T1. Sim-
ilarly, by T2 → T3, there exists a set of explicit definitions ∆23 which defines
all predicates of the language of T3 by those of T2. ∆12 generates a translation
tr21 : Form2 → Form1. Consequently, we can define a a set of explicit definitions
∆13 by rewriting all definitions in ∆23 in terms of L1, i.e.,

∆13
def
= ∆12 ∪

{
∀v̄
(
p(v̄)↔ tr21(ϕ(v̄))

)
: ∀v̄

(
p(v̄)↔ ϕ(v̄)

)
∈ ∆23

}
.

∆13 is a set of explicit definitions and T1 ∪∆13 ≡ T3. Thus T1 → T3. �

Theorem 2. If theories T1, T2 and T3 are formulated in disjoint languages and
T1 →

← T2 and T2 →← T3, then T1 and T3 are also mergeable, i.e.,

T1
∅
→← T2

∅
→← T3 and PredL1

∩ PredL3
= ∅, then T1

∅
→← T3.

Proof. Let T1, T2 and T3 be theories such that both PredL1
∩ PredL3

= ∅ and

T1
∅
→← T2

∅
→← T3 holds. By definition, we have that there exist sets ∆12, ∆21,

∆23 and ∆32 of explicit definitions, such that

T1 ∪∆12 ≡ T2 ∪∆21, i.e., Mod(T1 ∪∆12) = Mod(T2 ∪∆21), (2)

and
T2 ∪∆23 ≡ T3 ∪∆32, i.e., Mod(T2 ∪∆23) = Mod(T3 ∪∆32). (3)

By Lemma 3 and the assumption that the languages are disjoint, we have that
T1∪∆12∪∆23 is a definitional extension of T1 and T3∪∆32∪∆21 is a definitional
extension of T3.26 Therefore, it is enough to prove that they are equivalent, i.e.,

Mod(T1 ∪∆12 ∪∆23) = Mod(T3 ∪∆32 ∪∆21).

26That is, T1 ∪∆12 ∪∆23 ≡ T1 ∪∆13 and T3 ∪∆32 ∪∆21 ≡ T3 ∪∆31 for some admissible sets
of explicit definitions ∆13 and ∆31.
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If M ∈ Mod(T1∪∆12∪∆23) is a model, then M |= T1∪∆12∪∆23. Therefore,
M |= T2 ∪ ∆21 by (2) and also M |= T3 ∪∆32 because of (3) and the fact that
M |= ∆23. Hence M |= T3 ∪∆32 ∪∆21. Consequently,

Mod(T1 ∪∆12 ∪∆23) ⊆ Mod(T3 ∪∆32 ∪∆21).

An analogous calculation shows that

Mod(T1 ∪∆12 ∪∆23) ⊇ Mod(T3 ∪∆32 ∪∆21).

Therefore, Mod(T1 ∪ ∆12 ∪ ∆23) = Mod(T3 ∪ ∆32 ∪ ∆21) and this is what we
wanted to prove. �

Theorem 3. Definitional equivalence
4
≡ is an equivalence relation.

Proof. To show that definitional equivalence is an equivalence relation, we need
to show that it is reflexive, symmetric and transitive:

•
4
≡ is reflexive because for every theory T → T since the set of explicit
definitions ∆ can be the empty set, and hence T

4
≡ T .

•
4
≡ is symmetric: if T

4
≡ T ′, then there exists a chain T . . . T ′ of theories

connected by ≡, → and ← . The reverse chain T ′ . . . T has the same kinds
of connections, and hence T ′

4
≡ T .

•
4
≡ is transitive: if T1

4
≡ T2 and T2

4
≡ T3, then there exists chains T1 . . . T2

and T2 . . . T3 of theories connected by≡, → and← . The concatenated chain
T1 . . . T2 . . . T3 has the same kinds of connections, and hence T1

4
≡ T3. �

Lemma 4. If T
4
≡ T ′, then there is a chain of definitional mergers such that

T →← T1 →
← T2 →

← . . . →← Tn →
← T ′.

Proof. Since definitional extension is reflexive, the finite chain of steps given
by Definition 5 for definitional equivalence can be extended by adding extra
extension steps → or ← wherever needed in the chain, that is when we have
subsequent →-steps or ← -steps, and perhaps at the beginning or at the end of
the chain. �

Lemma 5. Let Ti and Tj be two theories for which Ti →← Tj . Then

• if Tj
∅' T ′j and PredLi ∩ PredL′

j
= ∅, then Ti

∅
→← T ′j

• if Ti
∅' T ′i , Tj

∅' T ′j and PredL′
i
∩ PredL′

j
= ∅, then T ′i

∅
→← T ′j .
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Proof. Since Ti →← Tj , there are by Lemma 1 sets ∆ij and ∆ji of explicit defini-
tions such that Ti ∪∆ij ≡ Tj ∪∆ji:

∆ij =
{
∀v̄ (p(v̄)↔ ϕp(v̄)) : p ∈ PredLj

\ PredLi

}
,

i.e., ϕp is the definition of predicate p from PredLj \ PredLi .

∆ji =
{
∀v̄ (q(v̄)↔ ϕq(v̄)) : q ∈ PredLi \ PredLj

}
,

i.e., ϕq is the definition of predicate q from PredLi \ PredLj . We can now define
∆ij′ and ∆j′i in the following way:

∆ij′
def
=
{
∀v̄
(
R∅LjL′

j

(
p
)
(v̄)↔ ϕp(v̄)

)
: p ∈ PredLj

\ PredLi

}
∪
{
∀v̄
(
R∅LjL′

j

(
p
)
(v̄)↔ p(v̄)

)
: p ∈ PredLj

∩ PredLi

}
,

i.e., in ∆ij′ the renaming R∅LjL′
j

(
p
)

of predicate p from PredLj
is defined with

the same formula ϕj as p was defined in ∆ij .

∆j′i
def
=
{
∀v̄
(
q(v̄)↔ R̄∅LjL′

j

(
ϕq(v̄)

))
: q ∈ PredLi

\ PredLj

}
∪
{
∀v̄
(
q(v̄)↔ R∅LjL′

j

(
q
)
(v̄)
)

: q ∈ PredLi
∩ PredLj

}
,

i.e., in ∆j′i predicate q from PredLi
is defined with the renaming R̄∅LjL′

j

(
ϕq) of

the formula ϕq that was used in ∆ji to define q.

Then Ti ∪∆ij′ ≡ T ′j ∪∆j′i , and hence we have proven that Ti
∅
→← T ′j .

Similarly, we can define ∆i′j′ and ∆j′i′ as:

∆i′j′
def
=
{
∀v̄
(
R∅LjL′

j

(
p
)
(v̄)↔ R̄∅LiL′

i

(
ϕp(v̄)

))
: p ∈ PredLj \ PredLi

}
∪
{
∀v̄
(
R∅LjL′

j

(
p
)
(v̄)↔ R∅LiL′

i

(
p
)
(v̄)
)

: p ∈ PredLj ∩ PredLi

}
,

i.e., in ∆i′j′ the renaming R∅LjL′
j

(
p
)

of predicate p from PredLj is defined with
the renaming R̄∅LiL′

i

(
ϕp) of the formula ϕp that was used in ∆ij to define p.

∆j′i′
def
=
{
∀v̄
(
R∅LiL′

i

(
q
)
(v̄)↔ R̄∅LjL′

j

(
ϕq(v̄)

))
: q ∈ PredLi

\ PredLj

}
∪
{
∀v̄
(
R∅LiL′

i

(
q
)
(v̄)↔ R∅LjL′

j

(
q
)
(v̄)
)

: q ∈ PredLi
∩ PredLj

}
,

i.e., in ∆j′i′ the renaming R∅LiL′
i

(
q
)

of predicate q from PredLi
is defined with

the renaming R̄∅LjL′
j

(
ϕq) of the formula ϕq that was used in ∆ji to define q.

Then T ′i ∪∆i′j′ ≡ T ′j ∪∆j′i′ , and hence we have proven that T ′i
∅
→← T ′j . �
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Theorem 4. Theories T1 and T2 are definitionally equivalent iff there is a theory
T ′2 which is the disjoint renaming of T2 to a language which is also disjoint from
the language of T1 such that T ′2 and T1 are definitionally mergeable, i.e.,

T1
4
≡ T2 ⇔ there is a theory T ′2 such that T1

∅
→← T ′2 and T ′2

∅' T2.

Proof. Let T1 and T2 be definitional equivalent theories. From Lemma 4, we
know that there exists a finite chain of definitional mergers

T1 →
← T̃1 →

← . . . →← T̃n →
← T2.

For all i in {1, . . . , n}, let T̃ ′i be a renaming of T̃isuch thatPredL1∩PredL̃′
i
= ∅ and

for all j in {1, . . . n}, if i 6= j then PredL̃′
i
∩ PredL̃′

j
= ∅. Let T ′2 be a renaming of

T2 such that PredL1
∩ PredL′

2
= ∅, PredL2

∩ PredL′
2

= ∅ and for all j in {1, . . . n},
PredL̃′

j
∩ PredL2

= ∅.

By Lemma 5, T̃ ′1, . . . , T̃ ′n, T ′2 is another chain of mergers from T1 to T2

T1
∅
→← T̃ ′1

∅
→← . . . T̃ ′n

∅
→← T ′2

∅' T2,

where all theories in the chain have languages which are disjoint from the lan-
guages of all the other theories in the chain, except for T1 and T2 which may
have languages which are non-disjoint.

By Theorem 2, the consecutive mergers from T1 to T ′2 can be compressed

into one merger. So T1
∅
→← T ′2

∅' T2 and this is what we wanted to prove.

To show the converse direction, let us assume that T1 and T2 are such the-
ories that there is a disjoint renaming theory T ′2 of T2 for which T1 →← T ′2. As

T ′2 is a disjoint renaming of T2, we have by Remark 6 that T ′2
∅
→← T2. Therefore,

there is a chain T+, T× of theories such that T1 → T+ ← T ′2 → T
× ← T2. Hence

T1
4
≡ T2. �

Corollary 2. Two theories are definitionally equivalent iff they can be connected
by two definitional mergers:

T1
4
≡ T2 ⇔ there is a theory T such that T1

∅
→← T

∅
→← T2.

Consequently, the chain T1, . . . , Tn in Definition 5 can always be chosen to be at
most length four.

Proof. This follows immediately from Theorem 4 and Remark 6. �

Theorem 5. Definitional equivalence is the finest equivalence relation contain-
ing definitional mergeability. In fact

4
≡ is the transitive closure of →← .
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Proof. From Remark 4, we know that
4
≡ is an extension of →← . To prove that

4
≡

is the transitive closure of →← , it is enough to show that T1
4
≡ T2 holds if there

is a chain T ′1, . . . , T ′n of theories such that T1 = T ′1, T2 = T ′n, and T ′i →
← T ′i+1 for

all 1 ≤ i < n. By Theorem 4, there is a theory T ′ such that T1 →← T ′
∅' T2. By

Remark 6, T1 →← T ′ →← T2 which proves our statement. �

It is known that, for disjoint languages, being definitionally mergeable and
intertranslatability are equivalent, see e.g., (Barrett and Halvorson 2016a, The-
orems 1 and 2). Now we show that, for disjoint languages, definitional equiva-
lence also coincides with these concepts, i.e.:

Theorem 6. Let T and T ′ be theories formulated in disjoint languages. Then

T
4
≡ T ′ ⇔ T

∅
→← T ′ ⇔ T � T ′.

Proof. Since T
∅
→← T ′ ⇔ T � T ′ is proven by (Barrett and Halvorson 2016a,

Theorems 1 and 2), we only have to prove that T
4
≡ T ′ ⇔ T

∅
→← T ′.

Let theories T and T ′ be definitionally equivalent theories in disjoint lan-
guages, i.e., PredL ∩ PredL′ = ∅. Since they are definitionally equivalent, there
exists, by Theorem 4 a chain which consists of a single mergeability and a re-
naming step between T and T ′. Since T and T ′ are disjoint, and since renaming
by Remark 6 is also a disjoint merger, these two steps can by Theorem 2 be re-

duced to one step T
∅
→← T ′, and this is what we wanted to prove.

The converse direction follows straightforwardly from the definitions. �

Let us now look at the relation between syntax and semantics, and consider
models of theories.

Theorem 7. Let T1 and T2 be arbitrary theories, then T1 and T2 are mergeable
iff they are model mergeable, i.e.,

T1 →
← T2 ⇔ Mod(T1) →← Mod(T2).

Proof. Let T1 and T2 be arbitrary theories.

Let us first assume that T1 →← T2 and prove that Mod(T1) →← Mod(T2).
We know from Lemma 1 that there exist sets of explicit definitions ∆12

and ∆21 such that T1 ∪ ∆12 ≡ T2 ∪ ∆21. Therefore, by Definition 1,
Mod(T1 ∪∆12) = Mod(T2 ∪∆21). We construct map β between Mod(T1) and
Mod(T2) by expanding models of T1 using the explicit definitions in ∆12, which
since Mod(T1 ∪∆12) = Mod(T2 ∪∆21) will be a model of T1 ∪∆12, and then by
taking the reduct to the languages of T2. This map associating the appropriate
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reducts to the models of T2 ∪ ∆21 is the inverse of the map from Mod(T2) to
Mod(T2 ∪ ∆21) associating the definitional expansion of the models of T2 us-
ing definitions ∆21. Since definitional expansions are bijections, we have that
β is also a bijection. Through this construction, the relations in β(M) are the
ones defined in M according to ∆12 and vice versa, the relations in M are the
ones defined in β(M) according to ∆21, and clearly the underlying set of M and
β(M) are the same. Hence Mod(T1) →← Mod(T2).

Let us now assume that Mod(T1) →← Mod(T2) and prove that T1 →← T2. We
know by Definition 7 that there is a bijection β between Mod(T1) and Mod(T2)

that is defined along two sets ∆12 and ∆21 of explicit definitions such that if
M ∈ Mod(T1), then

1. the underlying set of M and β(M) are the same,

2. the relations in β(M) are the ones defined in M according to ∆12 and vice
versa, the relations in M are the ones defined in β(M) according to ∆21.

Let M+ be a model of T1 ∪ ∆12 and let M be its reduct to the language of T1.
Then β(M) is a model of T2 having the same underlying set by item 1. Let
β(M)+ be the expansion of β(M) by definitions in ∆21. By item 2, we have
that β(M)+ = M+. Clearly, β(M) is a model of T2 ∪ ∆21. Consequently,
Mod(T1 ∪ ∆12) ⊆ Mod(T2 ∪ ∆21). An analogous argument can show that
Mod(T1 ∪∆12) ⊇ Mod(T2 ∪∆21). Therefore, Mod(T1 ∪∆12) = Mod(T2 ∪∆21),
and thus by Definition 1, T1 ∪∆12 ≡ T2 ∪∆21. Consequently, T1 →← T2. �

Theorem 8. Let T1 and T2 be arbitrary theories. Then T1 and T2 are definition-
ally equivalent iff they are intertranslatable, i.e.,

T1
4
≡ T2 ⇔ T1 � T2.

Proof. Let us first assume that T1
4
≡ T2. Let T ′ be a disjoint renaming of T2 to

a language which is also disjoint from the language of T1. By Remark 6 and
the transitivity of

4
≡, we have T1

4
≡ T ′

4
≡ T2. By Theorem 6, T1 � T ′ � T2.

Consequently, T1 � T2 because relation � is transitive.

To prove the converse, let us assume that T1 � T2. Let T ′ again be a disjoint
renaming of T2 to a language which is also disjoint from the language of T1. By
Remark 6 and the transitivity of �, we have T1 � T ′ � T2. By Theorem 6,
T1
4
≡ T ′

4
≡ T2. Thus, T1

4
≡ T2 because relation

4
≡ is transitive. �

Theorem 9. Let T1 and T2 be arbitrary theories, then T1 and T2 are intertrans-
latable iff their models are intertranslatable, i.e.,

T1 � T2 ⇔ Mod(T1) � Mod(T2)
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Proof. Let us first assume that T1 � T2 and prove that Mod(T1) � Mod(T2).
Let tr12 and tr21 be the corresponding interpretations between T1 and T2. It is
enough to show that tr∗12 : Mod(T2)→ Mod(T1) and tr∗21 : Mod(T1)→ Mod(T2)

are bijections and are inverses of each other.
For all M ∈ Mod(T1),

M |= ∀v̄
(
ϕ(v̄)↔ tr21

(
tr12(ϕ(v̄))

))
.

By Definition 2 and Remark 2, this is equivalent to

M |= ϕ[e]⇔M |= tr21(tr12(ϕ))[e]

for all evaluations e : Var→M .
By applying Lemma 2 twice,

M |= tr21(tr12(ϕ))[e]⇔ tr∗21(M) |= tr12(ϕ)[e]⇔ tr∗12(tr∗21(M)) |= ϕ[e].

Consequently,
M |= ϕ[e]⇔ tr∗12(tr∗21(M)) |= ϕ[e].

Since M is the underlying set of both M and tr∗12(tr∗21(M)), this implies that
M = tr∗12(tr∗21(M)). A completely analogous proof shows thatN = tr∗21(tr∗12(N))

for all models N of T2.
Consequently, tr∗12 and tr∗21 are everywhere defined and they are inverses of

each other because when we combine them we get the identity, and hence they
are bijections, which is what we wanted to prove.

Let us now assume that Mod(T1) � Mod(T2) and prove that T1 � T2. By
Definition 13 and Corollary 1, we know that there are interpretations tr12 and
tr21 between T1 and T2 such that the induced maps tr∗12 : Mod(T1) → Mod(T2)

and tr∗21 : Mod(T2) → Mod(T1) are bijections which are inverses of each other,
and thus M = tr∗12(tr∗21(M)) for all models M of T1. Since M is the underlying
set of M, and tr∗12(tr∗21(M)), we have that

M |= ϕ[e]⇔ tr∗12(tr∗21(M)) |= ϕ[e].

From this, by applying Lemma 2 twice, we get

M |= ϕ[e]⇔M |= tr21(tr12(ϕ))[e].

for all evaluations e : Var → M . By Definition 2 and Remark 2, the above is
equivalent to

M |= ∀v̄
(
ϕ(v̄)↔ tr21

(
tr12(ϕ(v̄))

))
.

A completely analogous proof shows that

N |= ∀v̄
(
ψ(v̄)↔ tr12

(
tr21(ψ(v̄))

))
,

from which follows by Definition 10 that T1 � T2. �
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Remark 7. If we use the notations of this paper, Theorem 4.2 of (Andréka and
Németi 2014) claims, without proof, that (i) definitional equivalence, (ii) def-
initional mergeability, (iii) intertranslatability and (iv) model mergeability are
equivalent in case of disjoint languages. In this paper, we have not only proven
these statements, but we also showed which parts can be generalized to arbi-
trary languages and which cannot. In detail:

• item (i) is equivalent to item (iii) by Theorem 6, and we have generalized
this equivalence to theories in arbitrary languages by Theorem 8,

• the equivalence of items (ii) and (iv) have been generalized to theories in
arbitrary languages by Theorem 7,

• items (i) and (ii) are indeed equivalent for theories in disjoint languages by
Theorem 6; however, they are not equivalent for theories in non-disjoint
languages by the counterexample in Theorem 1,

• in Definition 13, we have introduced a model theoretic counterpart of in-
tertranslatability which, by Theorem 9, is equivalent to it even if the lan-
guages are not disjoint.

4 Conclusion

Since definitional mergeability is not transitive, by Theorem 1, and thus not an
equivalence relation, the Barrett–Halvorson generalization is not a well-founded
criterion for definitional equivalence when the languages of theories are not
disjoint. Contrary to this, the Andréka–Németi generalization of definitional
equivalence is an equivalence relation, by Theorem 3. It is also equivalent to in-
tertranslatability, by Theorem 8, and to model intertranslatability, by Theorem
9, even for non-disjoint languages. Therefore, the Andréka–Németi generaliza-
tion is more suitable to be used as the extension of definitional equivalence be-
tween theories of arbitrary languages. It is worth noting, however, that the two
generalizations are really close to each-other since the Andréka–Németi gen-
eralization is the transitive closure of the Barrett-Halvorson one, see Theorem
5. Moreover, they only differ in at most one disjoint renaming, see Theorems 4
and 6, and as long as we restrict ourselves to theories which all have mutually
disjoint languages, Barrett–Halvorson’s definition is transitive by Theorem 2.

We hope to have provided a building block for a framework for comparing
theories, and to have clarified the relations between the different ways in which
theories can be equivalent.
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